首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Programmed cell death (PCD) is a fundamental component of development in virtually all animals. Despite the ubiquity of this phenomenon, little is known about what tells a cell to die, and less still about the physiological and molecular mechanisms that bring about death. One system that has proven to be very amenable for the study of PCD is the intersegmental muscle (ISM) of the tobacco hawkmoth Manduca sexta. These giant muscle cells are used during the eclosion (emergence) behavior of the adult moth, and then die during the subsequent 30 h. This review uses the ISMs as a model system to address questions that are basic to any cell death system, including the following: (1) how do cells know when to die; (2) what physiological changes accompany death; (3) what are the molecular mechanisms that mediate death; and (4) do all cells die by the same process? For the ISMs, the trigger for PCD is a decline in the circulating titer of the insect molting hormone, 20-hydroxyecdysone (20-HE). During cell death there are rapid decreases in both the myofibrillar sensitivity to intracellular calcium and the resulting force of fiber contraction. The ability of the ISMs to under go PCD requires the repression and activation of specific genes. Two of the repressed genes encode actin and myosin. One of the upregulated presumptive cell-death genes encodes polyubiquitin, which appears to play a critical role in the rapid proteolysis that accompanies ISM death. One curious aspect of ISM death is that these cells display none of the features that are characteristic of apoptosis, suggesting that they may die by a fundamentally different mechanism. © 1992 John Wiley & Sons, Inc.  相似文献   

2.
The emergence of the adult Manduca sexta moth is accompained by the death of half of the neurons present in the pupal abdominal nervous system (Truman, 1983). This developmental neuronal death is highly selective, so that the same neurons die at the same time relative to emergence in every moth. In the case of the MN-12 motoneurons, this cell death is regulated both by hemolymph concentrations of a steroid hormone, 20-hydroxyecdysone, and by actions exerted by adjacent ganglia (Truman and Schwartz, 1984; Fahrbach and Truman, 1987). This latter effect, which has been previously described in isolated abdomens and in moths with transected ventral nerve cords, has now been reproduced under controlled culture conditions in which the selectivity and extent of postemergence neuronal death is comparable to that seen in vivo. With respect to the MN-12 neurons found in the most anterior unfused abdominal ganglion, A3, the pterothoracic ganglion appears to be the source of a factor that permits these neurons to die according to their usual developmental schedule. © 1992 John Wiley & Sons, Inc.  相似文献   

3.
4.
In Manduca sexta, the larval abdominal prolegs and their muscles degenerate at pupation. The proleg motor neurons undergo a period of dendritic regression, after which a specific subset of them dies. The surviving motor neurons undergo dendritic outgrowth during pupal-adult development, and most die after adult emergence. All of these events are regulated hormonally by ecdysteroids and juvenile hormone, but interactions of the motor neurons with other cells may potentially contribute as well. To investigate the possible influence of interganglionic neural interactions, we chronically isolated individual abdominal ganglia by severing the adjacent rostral and caudal connectives in the larval stage. Subsequent metamorphic changes in proleg motor neurons were examined in the isolated ganglia and ganglia adjacent to the isolated ganglia. Two abnormalities were observed: (1) some imprecision in the timing of motor neuron death, both at pupation and after adult emergence, and (2) the growth of ectopic neurites outside the neuropil boundaries during pupal-adult development (in ganglia with or without neuromas caused by connective transections). Other aspects of proleg motor neuron metamorphosis, including the segment-specific death of motor neurons at pupation, were the same as that in intact and sham-operated insects. Thus, interganglionic interactions appear to play a relatively minor role in the steroid-mediated metamorphic transformation of proleg motor neurons. © 1994 John Wiley & Sons, Inc.  相似文献   

5.
6.
Programmed cell death (PCD) is a fundamental component of development in virtually all animals. Despite the ubiquity of this phenomenon, little is known about what tells a cell to die, and less still about the physiological and molecular mechanisms that bring about death. One system that has proven to be very amenable for the study of PCD is the intersegmental muscle (ISM) of the tobacco hawkmoth Manduca sexta. These giant muscle cells are used during the eclosion (emergence) behavior of the adult moth, and then die during the subsequent 30 h. This review uses the ISMs as a model system to address questions that are basic to any cell death system, including the following: (1) how do cells know when to die; (2) what physiological changes accompany death; (3) what are the molecular mechanisms that mediate death; and (4) do all cells die by the same process? For the ISMs, the trigger for PCD is a decline in the circulating titer of the insect molting hormone, 20-hydroxyecdysone (20-HE). During cell death there are rapid decreases in both the myofibrillar sensitivity to intracellular calcium and the resulting force of fiber contraction. The ability of the ISMs to undergo PCD requires the repression and activation of specific genes. Two of the repressed genes encode actin and myosin. One of the upregulated presumptive cell-death genes encodes polyubiquitin, which appears to play a critical role in the rapid proteolysis that accompanies ISM death.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The emergence of the adult Manduca sexta moth is accompanied by the death of half of the neurons present in the pupal abdominal nervous system (Truman, 1983). This developmental neuronal death is highly selective, so that the same neurons die at the same time relative to emergence in every moth. In the case of the MN-12 motoneurons, this cell death is regulated both by hemolymph concentrations of a steroid hormone, 20-hydroxyecdysone, and by actions exerted by adjacent ganglia (Truman and Schwartz, 1984; Fahrbach and Truman, 1987). This latter effect, which has been previously described in isolated abdomens and in moths with transected ventral nerve cords, has now been reproduced under controlled culture conditions in which the selectivity and extent of postemergence neuronal death is comparable to that seen in vivo. With respect to the MN-12 neurons found in the most anterior unfused abdominal ganglion, A3, the pterothoracic ganglion appears to be the source of a factor that permits these neurons to die according to their usual developmental schedule.  相似文献   

8.
A decline in circulating 20-hydroxyecdysone permits the emergence of the adult Manduca sexta moth; this endocrine signal also triggers the death of approximately half of the neurons in the unfused abdominal ganglia of the moth central nervous system. This programmed death of neurons was markedly reduced by treatment with either actinomysin D (an RNA synthesis inhibitor) or cycloheximide (a protein synthesis inhibitor). Similar results were found after addition of these agents to ventral nerve cord cultures. The effectiveness of these treatments in delaying or blocking neuronal death depended upon their time of administration relative to the normal time of post-emergence death in the particular motoneuron under study: late-dying neurons, for example, could still be saved by these treatments even after early-dying neurons had already initiated degeneration. In both intact moths and cultured ventral nerve cords, the ability of actinomycin D to prevent neuronal death waned at the same time at which replacement of the steroid hormone could no longer block neuronal death. This suggests that the steroid commitment point represents the time at which the genes that mediate cell death are transcribed. Cycloheximide remained effective in delaying or blocking neuronal death until shortly before the onset of degeneration, suggesting that ongoing protein synthesis is essential for the initiation of the degeneration response. 1994 John Wiley & Sons, Inc.  相似文献   

9.
10.
The in vitro study was performed in order to demonstrate the structural changes of lipophorin induced in vivo by the injection of adipokinetic hormone (AKH) into adult locusts. After many unsuccessful attempts, we have established the reconstructed incubation system in which purified lipophorin and apolipophorin-III (9 mol/mol lipophorin) are incubated with the fat body in the presence of AKH under a supply of excess oxygen. In this system, high density lipophorin (HDLp) originally present in the incubation medium can be transformed entirely into low density lipophorin (LDLp) due to the loading of an increased amount of diacylglycerol from the fat body. The LDLp formed in this incubation system was exactly the same as the LDLp formed in vivo by the injection of AKH, in terms of density, particle size, diacylglycerol content, and the association with apolipophorin-III (apoLp-III). In the absence of apoLp-III, AKH did not exhibit its function to any extent. It was also demonstrated that the transformation of HDLp to LDLp requires calcium ions. Moreover, it appears that, up to a certain limit, the increase of diacylglycerol content of lipophorin and the amount of apoLp-III associated with lipophorin is nearly proportional to the amount of apoLp-III added to the incubation medium.  相似文献   

11.
Apolipophorin-III (apoLp-III) was purified from the haemolymph of adult Hyphantria cunea (Drury) by KBr density gradient ultracentrifugation, gel filtration (Sephadex G-100) and ion exchange chromatography (CM-52), and its characteristics, molecular weight, tissue distribution, and sites of synthesis were examined. Molecular weight of apoLp-III was estimated to be 18 kDa. By electrophoretic analysis on 10% gels of male and female haemolymph from diverse developmental stages, apoLp-III was shown to be present in all stages. Western blotting was carried out to show that purified free apoLp-III is identical to apoLp-III associated with adult lipophorin. Immunological analysis also showed that apoLp-III is present in the ovary and the testis and in the case of testis, apoLp-III is heavily accumulated in the cyst. ApoLp-III is synthesized in larval and adult fat body but not in adult testis. Autoradiography following incubation of [14C]apoLp-III with testis showed that apoLp-III was taken up into testis. © 1996 Wiley-Liss, Inc.  相似文献   

12.
Lipophorin structure analyzed by in vitro treatment with lipases.   总被引:1,自引:0,他引:1  
Adult Manduca sexta high density lipophorin (HDLp-A) is composed of three apolipoproteins (apoLp-I, -II, and -III) and 52% lipid. The flight-specific low density lipophorin (LDLp) contains 62% lipid and is associated with several additional molecules of apoLp-III. The amount of phospholipid remains constant in lipophorin (140 mol/mol of lipophorin), while the diacylglycerol content varies between different lipophorin species (310 mol/mol HDLp up to 1160 mol/mol LDLp). Both lipophorin particles were enzymatically depleted of phospholipid or diacylglycerol by in vitro incubation with either phospholipase A2 or triacylglycerol lipase. Albumin was used to remove free fatty acids generated during the reaction. Treatment with phospholipase A2 removed all phospholipids (except sphingomyelin) and the resulting particles were stable. Triacylglycerol lipase hydrolyzed large fractions of diacylglycerol. The resulting particles were smaller in size, higher in density, and devoid of apoLp-III. The particles retained apoLp-I and -II and the other lipid components, including a substantial amount of diacylglycerol. Structural integrity of diacylglycerol-depleted lipophorin was confirmed by electron microscopical analysis. When treated with both phospholipase A2 and triacylglycerol lipase, lipophorin precipitated. From these results we conclude that: 1) all phospholipid and apoLp-III are located at the surface of lipophorin, whereas diacylglycerol is partitioned between the sublayers and the surface of the particle; 2) both diacylglycerol and phospholipid play a role in stabilizing lipophorin in the aqueous medium; and 3) lipophorin can be extensively unloaded and still retain its basic structure, a necessary feature for its function as a reusable lipid shuttle.  相似文献   

13.
14.
We examined the expression of apolipophorin-III (apoLp-III) during embryonic development of the silkworm Bombyx mori. ApoLp-III mRNA was first expressed 24 h after oviposition, which corresponds to the time of germ band formation. The amount of apoLp-III in the eggs increased from day 2, peaked on day 4, and then gradually decreased until hatching (on day 9.5). ApoLp-III was apparently synthesized during early embryogenesis, as radioactive amino acids were incorporated into newly synthesized apoLp-III in three-day-old eggs. Moreover, radioactive apoLp-III was found only in the embryo and not in the extraembryonic tissue. KBr density gradient ultracentrifugation of egg homogenates showed that apoLp-III was associated with low-density lipophorin (LDLp). These results suggest that LDLp is required for the delivery of lipids for organogenesis during embryogenesis.  相似文献   

15.
The mechanism of the conversion of low-density lipophorin (LDLp) to high-density lipophorin (HDLp) in long-distance flight insects was investigated using a lipoprotein lipase from a bacterium, Alcaligenes sp. Diacylglycerol of LDLp was steadily hydrolyzed in vitro by the lipase, resulting in a 90% loss of diacylglycerol from LDLp during incubation. The "lipase-treated LDLp" thus obtained still contained associated apolipophorin-III (apoLp-III). These data suggest that the dissociation of apoLp-III is independent of the depletion of diacylglycerol from LDLp, and that the decrease in particle diameter caused by the depletion of diacylglycerol does not force the dissociation of apoLp-III from the lipophorin particle. Some physico-chemical properties of the lipase-treated LDLp were measured.  相似文献   

16.
Apolipophorin III: role model apolipoprotein   总被引:1,自引:0,他引:1  
It has been one-quarter century since the identification of apolipophorin III (apoLp-III) as an important component of insect hemolymph lipid transport processes. Original studies of flight-related lipid transport that led to the discovery of apoLp-III have been followed by detailed studies of its structure and function relations, species distribution as well as its physiological roles beyond lipid transport. The non-exchangeable apoLp-I and -II, which are derived from a common precursor, are structural protein components of the multifunctional lipophorin particle. ApoLp-I/II have been identified as members of a broad lipid-binding protein family based on sequence similarities with their vertebrate counterparts. By contrast, apoLp-III can be found as a lipid-free hemolymph protein that associates with lipophorin during hormone-induced lipid mobilization. Based on structural characterization, apoLp-III belongs to a large family of exchangeable apolipoproteins characterized by segments of amphipathic alpha-helix. The remarkable structural adaptability of apoLp-III can be ascribed to its globular amphipathic alpha-helix bundle conformation wherein hydrophobic lipid-binding regions are stabilized in the absence of lipid by helix-helix interactions. Upon exposure to potential lipid surface-binding sites, the globular helix bundle opens to expose its hydrophobic interior permitting substitution of helix-helix contact in the bundle for helix-lipid interactions. Novel functions of apoLp-III beyond lipid transport have been identified recently. The expanding role of apoLp-III in innate immunity promises to offer exciting research opportunities in the future.  相似文献   

17.
Injection of heat-killed bacteria into larvae of the greater wax moth Galleria mellonella is followed by changes in lipoprotein composition in the hemolymph. Density gradient centrifugation experiments revealed that within the first four hours after injection, a part of larval lipoprotein, high-density lipophorin (HDLp), was converted into a lipoprotein of lower density. SDS-polyacrylamide gel electrophoresis analysis of the gradient fractions and sequencing of protein fragments, established that the exchangeable apolipoprotein apolipophorin III (apoLp-III), a potent immune-activator, was associated with this newly formed lipophorin. To investigate further the influence of lipophorin-associated apoLp-III on immune-related reactions, we performed in vitro studies with isolated hemocytes from G. mellonella and lipophorins from the sphinx moth Manduca sexta, as a natural source of high amounts of low-density lipophorin (LDLp) and HDLp. The hemocytes were activated to form superoxide radicals upon incubation with LDLp, but not with HDLp. Fluorescence-labeled LDLp was specifically taken up by granular cells. This process was inhibited by adding an excess of unlabeled LDLp, but not by HDLp. We hypothesize that larval lipophorin formed in vivo is an endogenous signal for immune activation, specifically mediated by the binding of lipid-associated apoLp-III to hemocyte membrane receptors.  相似文献   

18.
A novel reaction, catalyzed by Manduca sexta lipid transfer particle (LTP), transforms low density lipophorin (LDLp) into two distinct lipoprotein species. A population of LDLp particles serves as lipid donor or acceptor in LTP-catalyzed production of a very low density lipophorin (VLDLp) and a high density lipophorin (HDLp) product. The products result from facilitated net transfer of lipid mass from donor LDLp particles to acceptor LDLp particles. Transfer of apolipophorin III (apoLp-III) from donor to acceptor lipoprotein occurs during the reaction to produce a lipid- and apoLp-III-enriched VLDLp species and lipid- and apoLp-III-depleted HDLp species. The VLDLp produced in this in vitro reaction contains more lipid and apoLp-III than any previous lipophorin species reported and further demonstrates the scope of the lipid binding capacity of lipophorin. Lipid analysis and radiolabeling studies confirmed that unidirectional net transfer of lipid mass and apoLp-III from donor to acceptor occurs. When 3H-lipid-LDLp was used as substrate in the LTP-catalyzed disproportionation reaction the density distribution of radioactivity and protein provided evidence of vectorial transfer of diacylglycerol, phospholipid, and free fatty acids. Electron micrographs of the original LDLp population and of the LTP-induced product lipoprotein population provided further support for the interpretation derived from biochemical studies. This LTP-catalyzed disproportionation was observed only with apoLp-III-rich LDLp suggesting that the presence of increased amounts of this apoprotein dramatically affects the properties of the particle and appears to be directly related to the capacity of the lipoprotein to bind lipid.  相似文献   

19.
Summary A set of motor neurons and interneurons in the thoracic nervous system of the meal beetle Tenebrio molitor L. is described that persist during metamorphosis. The motor neurons under discussion innervate the thoracic ventral longitudinal muscles and were identified by retrograde transport of intramuscularly injected horseradish peroxidase. Persisting motor neurons exhibit a complex repetitive pattern that changes only slightly during development. Additionally, the characterization of serotonin-immunoreactive neurons defines a complex set of interneurons that also persist throughout development. The fate of these identified neurons is outlined in detail with special reference to variations in their dendritic arborizations. All motor and interneurons are affected by a similar change in their shape during development. The larval neurons lack the contralateral arborization that is found in the adult beetle and is already distinguishable in the prepupa. Essentially only quantitative changes of the neuronal shape were observed during the pupal instar. No pupa-specific degeneration of certain axo-dendritic structures of these neurons was found. Removal of descending interneurons by sectioning the promesothoracic connectives causes specific degeneration of the dendritic tree of an identified serotonin-immunoreactive interneuron.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号