首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chiral recognition mechanisms with macrocyclic glycopeptide selectors   总被引:2,自引:0,他引:2  
Berthod A 《Chirality》2009,21(1):167-175
Macrocyclic glycopeptide selectors are naturally occurring antibiotics produced by microorganisms. They were found to be excellent chiral selectors for a wide range of enantiomers, including amino acids. Four selectors are commercialized as chiral stationary phases (CSP) for chromatography. They are ristocetin, teicoplanin, vancomycin, and the teicoplanin aglycone (TAG). The key docking interaction for amino acid recognition was established to be a charge-charge interaction between the anionic carboxylate group of the amino acid and a cationic amine group of the macrocyclic peptidic selector basket. The carbohydrate units are responsible for secondary interactions. However, they hinder somewhat the charge-charge docking interaction. The TAG selector is more effective for amino acid enantioseparations than the other CSPs. The "sugar" units are however useful allowing for chiral recognitions of other analytes, e.g., beta-blockers, not possible with the aglycone. Thermodynamic studies established that normal phase and reversed phase enantioseparations were enthalpy-driven. With polar waterless mobile phases used in the polar ionic mode, some separations were enthalpy-driven and others were entropy-driven. The linear solvation energy method was tentatively used to gain knowledge about the chiral recognition mechanism. It appeared to be a viable approach with neutral molecules but it failed with ionizable solutes. With molecular solutes and the teicoplanin CSP, the study showed a significant role of the surface charge-induced dipole interaction and steric effects. The remarkable complementary enantioselectivity effect observed with the four CSPs is discussed.  相似文献   

2.
Undecanoyl bound 3,5-dinitrobenzoyl-(S,R)-1,2-diphenylethane-1,2-diamine [(1S,2R)-DNB-DPEDA] as chiral selector (SO) has been synthesized and used as a chiral stationary phase (CSP II) for normal-phase enantioselective HPLC. It is compared with the already published diastereomeric (1S,2S)-DNB-DPEDA-derived CSP I and with the “standard” Pirkle DNB-(R)-phenylglycine-derived CSP III. Chromatographic data for about 100 racemic analytes reveal that CSP II is able to separate especially well enantiomers of derivatized aromatic carboxylic acids and analytes having a benzyl substituent bound at the chiral center. However, CSP I was found to be superior to CSP II and III in its general applicability and its ability to resolve enantiomers of heterocyclic drugs. © 1994 Wiley-Liss, Inc.  相似文献   

3.
High-performance liquid chromatographic methods were developed for the separation of the enantiomers of 12 beta-lactams. Direct separations were performed on chiral stationary phases (CSPs) containing cellulose-tris-3,5-dimethylphenyl carbamate (Chiralcel OD-RH and OD-H columns), the macrocyclic glycopeptide antibiotic teicoplanin (Chirobiotic T column), or teicoplanin aglycone (Chirobiotic TAG column) as the chiral selector. It was clearly established that, with teicoplanin-based columns, the teicoplanin aglycone was most often responsible for the enantioseparation of the beta-lactams. The difference in enantioselective free energy between the aglycone CSP and the teicoplanin CSP was in the range between 0.02 and 0.97 kJ mol(-1) for these beta-lactam stereoisomer separations. The separations were carried out with high selectivity and resolution, and the method was therefore suitable for monitoring of the enantiomeric excess after chiral synthesis. The Chirobiotic and Chiralcel columns appear to be highly complementary to one another. The best separation of this class of beta-lactam compound could be obtained using the Chirobiotic TAG in the polar-organic mode plus the Chiralcel OD-H in the normal-phase mode. The elution sequence was also determined.  相似文献   

4.
In order to apply the excellent chiral recognition ability of chiral pseudo-18-crown-6 ethers that we developed to chiral separation, we prepared a chiral stationary phase (CSP) by immobilizing a chiral pseudo-18-crown-6-type host on 3-aminopropyl silica gel. A chiral column was prepared by the slurry-packing method in a stainless steel HPLC column. A liquid chromatography system using this CSP combined with the detection by mass spectrometry was used for enantiomer separation of amino compounds. A normal mobile phase can be used on this CSP as opposed to conventional dynamic coating-type CSPs. Enantiomers of 18 common natural amino acids were efficiently separated. The chiral separation observed for amino acid methyl esters, amino alcohols, and lipophilic amines was fair using this HPLC system. In view of the correlation between the enantiomer selectivity observed in chromatography and the complexion in solution, the chiral recognition in host-guest interactions might contribute to this enantiomer separation.  相似文献   

5.
This paper deals with the chiral separation of triiodothyronine (T3) and thyroxine (T4) by HPLC and micro-HPLC. The separation of T3 and T4 is of great pharmaceutical and clinical interest, since the enantiomers exhibit different pharmacological activities. The HPLC measurements were performed on a chiral stationary ligand-exchange phase using l-4-hydroxyproline bonded via 3-glycidoxypropyltrimethoxysilane to silica gel as a selector. Also a chiral teicoplanin (Chirobiotic ™®) phase was used.

In micro-HPLC the chiral separation behaviour of l-4-hydroxyproline, and of the macrocyclic antibiotics teicoplanin and teicoplanin aglycone was investigated for the enantioseparation of T3 and T4. l-4-Hydroxyproline was bonded to 3 μm and the glycopeptide antibiotics were bonded to 3.5 μm silica gel and separations were accomplished by microbore HPLC columns (10 cm × 1 mm I.D.). With both techniques and all chiral selectors investigated T3 and T4 were baseline resolved. micro-HPLC was found to be superior to analytical HPLC with respect to low consumption of packing material, mobile phase and analyte.  相似文献   


6.
Im SH  Ryoo JJ  Lee KP  Choi SH  Jeong YH  Jung YS  Hyun MH 《Chirality》2002,14(4):329-333
Recently, it was reported that the chiral recognition ability of (R)-N-3,5-dinitrobenzoyl phenylglycinol derivative was examined as a new HPLC chiral stationary phase (CSP 1) for the resolution of racemic N-acylnaphthylalkylamines. However, the mechanism of chiral discrimination on the CSP remained elusive until now. In this study, a spectroscopic investigation of the chiral discrimination mechanism of CSP 1 was undertaken using mixtures of (R)-N-3,5-dinitrobenzoyl phenylglycinol-derived chiral selector (2) and each of the enantiomers of N-acylnaphthylalkylamines (3) by NMR study. First, the differences in free energy changes (DeltaDeltaG) upon diastereomeric complexation in solution between the complex of each isomer with chiral selector 2 by NMR titration were calculated. The values were then compared with those estimated by chiral HPLC. The chemical shift changes of each proton on the chiral selector and analytes were also checked and it was found that the chemical shift changes decreased continuously as the acyl group on analytes increased in length. This observation was consistent with the HPLC data. From these experimental results, the interaction mechanism of chiral discrimination between the chiral selector and the analytes is more precisely explained.  相似文献   

7.
A novel biselector bonded-type multifunctional chiral stationary phase (MCSP) was prepared by covalently crosslinking dialdehyde cellulose (DAC) with 6-monodeoxy-6-monoamino-β-cyclodextrine (CD) via Schiff base reaction. The biselector bonded-type MCSP had good chiral and achiral chromatographic performance in normal phase (NP) and reversed phase (RP) modes. Seven and eight enantiomers were successfully separated on the prepared biselector bonded-type MCSP in NP and RP modes, respectively. The biselector bonded-type MCSP showed enhanced chiral resolution ability compared with single selector chiral stationary phases due to the simultaneous introduction of DAC and 6-monodeoxy-6-monoamino-β-CD on the surface of silica gel. Aromatic compounds including polycyclic aromatic hydrocarbons, anilines, phenols, phenylates, and aromatic acids were choosed as analytes to investigate the achiral chromatographic performance of the biselector bonded-type MCSP in NP and RP modes. Chromatographic evaluation results showed that the above aromatic compounds were essentially capable of achieving baseline separation by hydrophobic interaction, π-π interaction, and π-π electron-donor-acceptor interaction. Moreover, the host-guest inclusion effect of 6-monodeoxy-6-monoamino-β-CD and the multiple interactions made the biselector bonded-type MCSP have good steric selectivity. The preparation method of the biselector bonded-type MCSP was simple and provided a new idea and strategy for the preparation of the subsequent novel biselector MCSP.  相似文献   

8.
Forjan DM  Kontrec D  Vinković V 《Chirality》2006,18(10):857-869
The replacement of the N-H hydrogen of the secondary amide-tethered Pirkle-concept N-(3,5-dinitrobenzoyl)-L-leucine derived chiral stationary phase with various pi-basic or aliphatic groups improved the chiral discrimination ability of new chiral stationary phases, based on the leucine- or alanine-derived chiral selector, for the enantiomers of various racemic neutral analytes with amide functional groups. Retention times decreased while separation and resolution factors increased, thus proving the role of pi-donor aromatic unit as an electron-rich shield in the front of a silica surface. In general, chiral stationary phase (CSP) 5 with the 3,5-dimethylphenyl unit showed best performance, while CSP 3, with phenyl unit, and CSP 7, with 1-naphthyl unit in the tertiary amide connecting tether, were less efficient.  相似文献   

9.
New brush-type chiral stationary phases (CSP I-IV) comprising N-3,5,6-trichloro-2,4-dicyanophenyl-L-alpha-amino acids (1-4) were prepared by binding of chiral selectors 1-4 to gamma-aminopropyl silica gel. To check the role of excess free aminopropyl groups, CSP V was prepared by binding N-3,5,6-trichloro-2,4-dicyanophenyl-L-alanyl-(3-triethoxysilyl)propylamide to unmodified silica gel. The best separation of racemic 2-aryloxypropionic acids (TR-1-13) was obtained with CSP I; the -(-)-S enantiomer were regularly eluted first, as determined by a CD detector. The mechanism of chiral recognition implies a synergistic interaction of carboxylic acid analyte with the chiral selector and achiral free gamma-aminopropyl units on silica. In fact, CSP V, which is lacking an achiral aminopropyl spacer, shows a lower separation ability for 2-aryloxypropionic acids, but a similar enantioselective discrimination of esters TR-19-20, in comparison with CSP I. CSP I-IV retain unaltered separation ability after a few months of continuous work using a large number of various mobile phases.  相似文献   

10.
Novel chiral ionic liquid stationary phases based on chiral imidazolium were prepared. The ionic liquid chiral selector was synthesized by ring opening of cyclohexene oxide with imidazole or 5,6‐dimethylbenzimidazole, and then chemically modified by different substitute groups. Chiral stationary phases were prepared by bonding to the surface of silica sphere through thioene “click” reaction. Their enantioselective separations of chiral acids were evaluated by high‐performance liquid chromatography. The retention of acid sample was related to the counterion concentration and showed a typical ion exchange process. The chiral separation abilities of chiral stationary phases were greatly influenced by the substituent group on the chiral selector as well as the mobile phase, which indicated that, besides ion exchange, other interactions such as steric hindrance, π‐π interaction, and hydrogen bonding are important for the enantioselectivity. In this report, the influence of bulk solvent components, the effects of varying concentration, and the type of the counterion as well as the proportion of acid and basic additives were investigated in detail.  相似文献   

11.
Chen S  Ward T 《Chirality》2004,16(5):318-330
A variety of compounds containing amines (i.e., amino acids, amino alcohols, etc.) were chemically derivatized with a variety of electrophilic tagging reagents to elucidate the chiral recognition sites on a teicoplanin-bonded chiral stationary phase (CSP) and on R-naphthylethylcarbamate-beta-cyclodextrin (RN-beta-CD)-bonded CSP. Solutes were separated under optimum chromatographic conditions on teicoplanin and RN-beta-CD CSPs for comparison using an acetonitrile-based mobile phase. It was noted that the size of the analyte or tagging reagent exerted a greater influence on compounds separated on teicoplanin than on RN-beta-CD when using the polar organic mode. This suggests that chiral recognition on teicoplanin CSP is more sensitive to size and indicates that the hydrophobic pocket of teicoplanin plays a significant role in chiral recognition in this mode. However, the type of functional groups had a greater impact than the size of analyte on separations obtained from RN-beta-CD phase in the polar-organic mode. Specifically, the pi-pi interaction was enhanced by derivatizing the aromatic ring of the tagging reagent with electron-withdrawing groups and thus altered the resolution substantially. For both phases, chiral recognition is most pronounced when the stereogenic center of the analyte is near the tagging moiety and surrounded by functional groups (e.g., carboxylic, etc.) which are favorable for hydrogen bonding.  相似文献   

12.
Chiral sorbents for HPLC separation of optical isomers carrying glycopeptide antibiotics (eremomycin or its eremosaminyl aglycon, ristomycin, or vancomycin) fixed onto the surface of silica gel have been synthesized. The patterns of the retention and separation of profen isomers and their dependence on the nature of the chiral selector and the eluant composition have been studied. The sorbents were shown to be highly enantiospecific in separating the isomers of alpha-amino-, alpha-hydroxy-, and alpha-methylphenylcarboxylic acids (profens).  相似文献   

13.
An enantioselective high performance liquid chromatographic-electrospray ionization mass spectrometric (HPLC-ESI-MS) method for the direct determination of several beta-adrenergic blockers was developed and validated. The method is based on the direct separation of the enantiomers of drugs on a laboratory-made chiral stationary phase (CSP) containing covalently bonded teicoplanin (TE) as chiral selector. Detection of the effluent was performed by electrospray ionization mass spectrometry, run in the selected-ion recording (SIR) mode. The method was applied to the pharmacokinetic monitoring of sotalol (STL) in the plasma of five young healthy volunteers, dosed with racemic drug. The limits of quantitation (LOQ) reached 4 ng/ml for both sotalol enantiomers. Such a method, fully validated, offers a novel, fast and very efficient tool for the direct determination of sotalol enantiomers in human plasma, and can be generally applied to the beta-adrenergic blockers stereoselective pharmacokinetics.  相似文献   

14.
The chiral selector vancomycin was used either as mobile phase additive or bound as a chiral stationary phase (CSP) for the stereoselective separation of seven racemic nonsteroidal anti-inflammatory drugs (NSAIDs), fenoprofen, carprofen, flurbiprofen, indoprofen, flobufen, ketoprofen, and suprofen, by capillary liquid chromatography. The effect of the type of stationary phase, the chiral column Chirobiotic V or the achiral stationary phases Nucleosil 100 C8 HD and Nucleosil 100 C18 HD, and the concentration of vancomycin in the mobile phase on separation of the drug enantiomers were evaluated. All the drugs, except flobufen, were successfully enantioseparated on Nucleosil 100 C8 HD with 4 mM vancomycin present in the mobile phase (composed of methanol and buffer) in the reversed phase mode. On the vancomycin-bonded chiral stationary phase, it was difficult to get enantioseparations of the profen NSAIDs. However, flobufen gave better enantioseparation on the vancomycin CSP. The better enantioresolution of the majority of profen derivatives on the achiral columns with vancomycin added to the mobile phase can be attributed in particular to the higher separation efficiency of this capillary chromatographic system. In addition, vancomycin dimers, formed in the mobile phase, seem to offer a better steric arrangement for stereoselective interaction to these analytes than the vancomycin bonded on the CSP. These substantial differences in the CS structure significantly influence the chiral discrimination mechanism.  相似文献   

15.
Hsien TJ  Chen S 《Amino acids》2007,33(1):97-104
Summary. A fluorescent electrophilic reagent, 9-fluorenone-4-carbonyl chloride (FCC), is chosen to functionalize amino acids in alkaline medium before their HPLC resolution. FCC reacts with both primary and secondary amino acids to produce stable and highly fluorescent derivatives suitable for sensitive and efficient chromatographic determination and resolution on a teicoplanin chiral stationary phase (CSP) using the methanol-based solvent mixture as the mobile phase. The detection limit is in the picomole range and approximately 0.01% of the d-enantiomer in an excess of the l-enantiomer is detectable. However, the resolution is not reproducible under the elution of either the water- or the acetonitrile-based mobile phase. The increase in solubility of analyte in the mobile phase seems to be responsible. Upon comparison under the optimal chromatographic conditions, the resolution is better than that for the 9-fluorenylmethyl chloroformate (FMOC) or 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) derivatives reported previously.  相似文献   

16.
Chiral sorbents for HPLC separation of optical isomers carrying glycopeptide antibiotics (eremomycin or its eremosaminyl aglycon, ristomycin, or vancomycin) fixed onto the surface of silica gel have been synthesized. The patterns of the retention and separation of profen isomers and their dependence on the nature of the chiral selector and the eluant composition have been studied. The sorbents were shown to be highly enantiospecific in separating the isomers of α-amino-, α-hydroxy-, and α-methylphenylcarboxylic acids (profens)  相似文献   

17.
Hyun MH  Song Y  Cho YJ  Choi HJ 《Chirality》2008,20(3-4):325-329
A doubly tethered chiral stationary phase (CSP) prepared by bonding (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid to doubly tethered primary aminoalkyl silica gel was used for the resolution of various beta-amino acids. All the beta-amino acids tested were resolved quite well, the separation (alpha) and the resolution factors (RS) being in the ranges 1.34-2.09 and 2.52-7.45, respectively, with a mobile phase of methanol-water (50:50, v/v) containing 10 mM acetic acid. The chiral recognition efficiency of the doubly-tethered CSP was found to be generally superior to that of the corresponding singly-tethered CSP in the resolution of beta-amino acids. The chiral recognition behaviors for the resolution of beta-amino acids on the doubly tethered CSP were examined by varying the type and content of organic and acidic modifiers in the aqueous mobile phase and the column temperature.  相似文献   

18.
The preconditions are outlined for enantioselective separations in capillary electrophoresis (CE) with chiral selectors as additives to the background electrolyte. Free solution capillary electrophoresis conditions are characterised by a single solution phase. Chiral separations are reviewed by selector type (chiral ligand exchange, cyclodextrins, crown ethers, glycoproteins) with the extensive studies on cyclodextrins grouped into sections on amino acids, pharmaceuticals, and speciality chemicals, optimisation, biological fluids, and quantitative aspects. In micellar electrokinetic capillary chromatography, enantioselective discrimination occurs by partition in a two-phase system, with a chiral micellar phase as selector. Optimum separation conditions can be readily predicted for a given selector–selectand combination, and absolute values of binding constants determined by CE. Advantages of CE in comparison with HPLC using a chiral stationary phase include robust, rapid assays and the use of small volumes of aqueous solutions; disadvantages include less favourable detection limits. © 1994 Wiley-Liss, Inc.  相似文献   

19.
Nanocrystalline cellulose (NCC) with high surface area and high ordered crystalline structure was prepared from microcrystalline cellulose (MCC) under the hydrolysis of sodium hypochlorite. NCC was further reacted with 3,5‐dimethylphenyl isocyanate to obtain the nanocellulose derivative, and then coated successfully on the surface of silica gel to a prepared NCC‐coated chiral stationary phase (CSP) as a new kind of chiral separation material. Similarly, MCC derivative‐coated CSP was also prepared as contrast. The chiral separation performance of NCC‐based CSP was evaluated and compared with MCC‐based CSP by high‐performance liquid chromatography. Moreover, the effects of the alcohol modifiers, mobile phase additives, and flow rates on chiral separations were investigated in detail. The results showed that 10 chiral compounds were separated on NCC‐based CSP with better peak shape and higher column efficiency than MCC‐based CSP, which confirmed that NCC‐based CSP was a promising packing material for the resolution of chiral compounds.Chirality 28:376–381, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

20.
Chen J  Li MZ  Xiao YH  Chen W  Li SR  Bai ZW 《Chirality》2011,23(3):228-236
(2S,3S)-2,3-Bis(3,5-dimethylphenylcarbonyloxy)-3-(benzyloxycarbonyl)-propanoic acid and (2S,3S)-2,3-bis(1-naphthalenecarbonyloxy)-3-(benzyloxycarbonyl)-propanoic acid were synthesized from D-tartaric acid. These two compounds were chlorinated to afford two chiral selectors for chiral stationary phases (CSPs). The selectors were separately immobilized on aminated silica gel to give two single selector CSPs; and were simultaneously immobilized to obtain a mixed selector CSP. Comparing to the single selector CSPs, the mixed selector CSP bears the enhanced enantioseparation ability, suggesting that the two selectors in the mixed selector CSP are consistent for chiral recognition in most mobile phase conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号