首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A set of phenyl ring‐substituted Nt‐butoxycarbonyl‐phenylalanine analogs were chirally resolved using an α‐Burke 2 Pirkle‐type chiral column under subcritical fluid conditions. Various mobile phase modifiers were used to elute the chiral analytes, resulting in different selectivity factors for each analog. The observed selectivity factors were accurately modeled based on the bulk solvation parameters for each mobile phase modifier. The resulting model equation was used to predict the selectivity factors using an additional modifier not included in the model building data set. The predictive ability of the model was demonstrated to be quite good for this limited range of analogs and mobile phase modifiers. Chirality 11:98–102, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

2.
A direct, isocratic, and simple reversed-phase HPLC method was described for the separation of enantiomers of the proton pump inhibitor, rac-pantoprazole (PAN) using cellulose-based chiral stationary phases (Chiralcel OD-R and Chiralcel OJ-R). Some structurally related chiral benzimidazole sulfoxides, rac-omeprazole (OME) and raclansoprazole (LAN), were also studied. Chiralcel OJ-R was successful in the resolution of enantiomers of rac-PAN and rac-OME, while Chiralcel OD-R was most suitable for resolving the enantiomers of rac-LAN. Highest enantioselectivity to rac-PAN and rac-OME was achieved on Chiralcel OJ-R by using acetonitrile as an organic modifier, whereas methanol afforded better resolution of rac-LAN on Chiralcel OD-R than acetonitrile. Increases in buffer concentration and column temperature decreased retention and did not improve the resolution of the enantiomers on both columns. Using a mixture of 50 mM sodium perchlorate solution and acetonitrile as a mobile phase at a flow rate of 0.5 ml/min, maximum separation factors of 1.26 and 1.13 were obtained for the enantiomers of rac-PAN and rac-OME using a Chiralcel OJ-R column, while maximum separation factor of 1.16 was obtained for the enantiomers of rac-LAN using a Chiralcel OD-R column. © 1995 Wiley-Liss, Inc.  相似文献   

3.
A simple and precise method for chiral separation of tryptophan enantiomers using high performance liquid chromatography with aligand exchange mobile phase was developed. Chiral separation was performed on a conventional C18 column, using a mobile phase that consisted of a water-methanol solution (88∶12, v/v) containing 10 mmol/Ll-leucine and 5 mmol/L copper sulfate as a chiral ligand additive at a flow rate of 1.0 mL/min. This method allowed baseline separation of two enantiomers with a resolution of 1.84 in less than 30 min. The effect of various conditions, including concentration, type of ligand, organic modifier, pH, flow rate, and temperature, on enantioseparation were evaluated and chiral recognition mechanisms were investigated. Thermodynamic data (ΔΔH and ΔΔS) obtained by van't Hoff plots revealed that enantioseparation is an enthalpy-controlled process.  相似文献   

4.
The HPLC separation of the R,S and S,R enantiomers of pyrrolidinyl norephedrine on immobilized alpha-1 glycoprotein (AGP) was investigated. Conditions for the separation were varied using a premixed mobile phase containing an ammonium phosphate buffer and an organic modifier. The influence of mobile phase pH, ionic strength, organic modifier composition, modifier type, and temperature on the chiral selectivity and retention were investigated. The presented data demonstrate that independent phenomena govern the enantioselectivity and retention. Retention is a function of both ion exchange equilibria and hydrophobic adsorption. Thermodynamic data derived from van't Hoff plots illustrates that while enantioselectivity is also enthalpically driven, the magnitude of the enthalpy term is governed by pH. Enantioselectivity has little dependence on ionic strength. Hydrophobic interactions appear to foster hydrogen bonding interactions; the two appear to be mutually responsible for chiral selectivity. The chiral selectivity decreases as the pH is decreased and increases with mobile phase buffer strength.  相似文献   

5.
Twelve chiral compounds were enantiomerically resolved on bovine serum albumin chiral stationary phase (BSA‐CSP) by high‐performance liquid chromatography (HPLC) in reversed‐phase modes. Chromatographic conditions such as mobile phase pH, the percentage of organic modifier, and concentration of analyte were optimized for separation of enantiomers. For N‐(2, 4‐dinitrophenyl)‐serine (DNP‐ser), the retention factors (k) greatly increase from 0.81 to 6.23 as the pH decreasing from 7.21 to 5.14, and the resolution factor (Rs) exhibited a similar increasing trend (from 0 to 1.34). More interestingly, the retention factors for N‐(2, 4‐dinitrophenyl)‐proline (DNP‐pro) decrease along with increasing 1‐propanol in mobile phase (3%, 5%, 7% and 9% by volume), whereas the resolution factor shows an upward trend (from 0.96 to 2.04). Moreover, chiral recognition mechanisms for chiral analytes were further investigated through thermodynamic methods. Chirality 25:487–492, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

6.
The aim of this study was to rationalise retention behaviour of a chiral solute on molecularly imprinted polymer (MIP) HPLC stationary phases in terms of variation of the mobile phase. It is generally held that the most important interaction governing the separation of enantiomers on such materials is H-bonding, and that retention times increase with decreasing H-bonding potential of the mobile phase. Previous studies have largely concerned mobile phases containing chloroform with acetic acid as a polar modifier. Boc-L-Phenylalanine (Boc-L-Phe-OH) MIPs were prepared, processed, and packed into HPLC columns, which were then used to investigate the retention characteristics of Boc-L-Phe-OH and Boc-D-Phe-OH with a range of mobile phases. The main observations were as follows: (1) in chloroform-based mobile phases there was generally a linear relationship between the H-bond donator factor of the polar modifier and capacity (K′). Results also indicated a hydrogen bond donor parameter value for a polar modifier at which retention became concentration independent; (2) For given values of K′L, K′D varied depending on the polar modifier, indicating that enantiomer resolution was solvent dependent; (3) Using mobile phases based on solvents of lower polarity/H-bonding potential than chloroform, substantial increases in K′ were observed, although enantioselectivity was greatly reduced. Chirality 9:238–242, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

7.
Haihong Wu  Stanley Yu  Lu Zeng 《Chirality》2016,28(3):192-198
Supercritical fluid chromatography (SFC), operated in conventional mode, is normally recognized as normal phase chromatography, and uses a solvent combination of supercritical CO2 and alcohols to separate compounds. Hexane, a commonly used solvent in normal phase liquid chromatography (NP‐LC), is rarely used in SFC and, in some cases, is added to the organic modifiers to increase liquid content in order to achieve better efficiency in preparative SFC for poorly retained compounds. Although hexane is believed to have similar solvent strength to that of supercritical CO2, its effects on the enantioseparation in SFC is largely unknown. To understand the chromatographic effects of an apolar solvent, such as hexane in SFC, we compared the chromatographic behaviors of 35 chiral compounds using a parallel SFC method under traditional SFC mode of only “pure” alcohol‐CO2 to that of hexane‐assisted SFC (HA‐SFC), which uses mixtures of alcohol and hexane (as cosolvents) and CO2. We observed that, in some cases, hexane behaves just like supercritical CO2, where replacement of a portion of CO2 with hexane does not significantly change retention times or resolution of the peaks. In many cases, however, addition of hexane in mobile phases does affect chromatographic behavior of one or both enantiomers. Such effects might provide opportunities for separation of some enantiomers. Chirality 28:192–198, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

8.
Pyriproxyfen is a chiral insecticide, and over 10 metabolites have been identified in the environment. In this work the separations of the enantiomers of pyriproxyfen and its six chiral metabolites were studied by high‐performance liquid chromatography (HPLC). Both normal phase and reverse phase were applied using the chiral columns Chiralpak IA, Chiralpak IB, Chiralpak IC, Chiralcel OD, Chiralcel OD‐RH, Chiralpak AY‐H, Chiralpak AD‐H, Chiracel OJ‐H, (R,R)‐Whelk‐O 1, and Lux Cellulose‐3. The effects of the chromatographic parameters such as mobile phase composition and temperature on the separations were investigated and the enantiomers were identified with an optical rotation detector. The enantiomers of these targets could obtain complete separations (resolution factor Rs > 1.5) on Chiralpak IA, Chiralpak IB, Chiralcel OD, Chiralpak AY‐H, or Chiracel OJ‐H under normal conditions. Chiralcel OJ‐H showed the best chiral separation results with n‐hexane as mobile phase and isopropanol (IPA) as modifier. The simultaneous enantiomeric separation of pyriproxyfen and four chiral metabolites was achieved on Chiralcel OJ‐H under optimized condition: n‐hexane/isopropanol = 80/20, 15°C, flow rate of 0.8 ml/min, and UV detection at 230 nm. The enantiomers of pyriproxyfen and the metabolites A , C , and D obtained complete separations on Chiralpak IA, Chiralpak IC, and Lux Cellulose‐3 under reverse phase using acetonitrile/water as the mobile phase. The retention factors (k) and selectivity factors (α) decreased with increasing temperature, and the separations were better under low temperature in most cases. The work is of significance for the investigation of the environmental behaviors of pyriproxyfen on an enantiomeric level. Chirality 28:245–252, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

9.
A direct chiral chromatographic reversed phase method for the determination of the enantiomers of felodipine is described. The influence of charged and uncharged modifiers as well as the effect of the mobile phase pH on the enantiomeric resolution is discussed. A high mobile phase pH and the addition of 2-propanol as organic modifier gave the highest separation factor (α = 1.3). The high mobile phase pH (pH = 7.6) is outside the recommended pH limit of silica based columns but was necessary to achieve baseline resolution of (R)- and (S)-felodipine. Improvement of column efficiency by increasing column temperature was utilized for optimization of the enantiomeric resolution (Rs = 1.7). The enantiomers of felodipine and three related compounds were separated within 15 min. The enantiomeric purity of (R)- and (S)-felodipine in injections and (R)-felodipine in bulk substance was higher than 99.5% and no racemization was observed after storage at accelerated conditions. A poor Chiral-AGP® column used for a long period was restored using a simple wash step together with repacking the top of the chromatographic column. © 1995 Wiley-Liss, Inc.  相似文献   

10.
The preparative separation of the enantiomers of the title compound, a versatile chiral building block for the synthesis of unnatural amino acid esters, by high performance liquid chromatography on a chiral stationary phase (CSP), is reported for the first time. The CSP consists of amylose-(3,5-dimethylphenyl-carbamate), which has been coated onto the surface of macroporous aminopropyl-functionalized silica gel. The effect of mobile phase composition and the amount of amylose derivative on the silica gel has been thoroughly investigated. Using 2-propanol as organic modifier in hexane as mobile phase, on a semi-preparative column (200 mm × 40 mm ID, containing 192 g of stationary phase) about 200 mg of the racemate was separated per injection. Running the equipment under automatic conditions with repetitive injection mode allowed for the separation of 30 g per day. Both enantiomers were obtained with enantiopurities >99.75:0.25. Chirality 10:217222, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

11.
A direct HPLC method was developed for the enantioseparation of pantoprazole using macrocyclic glycopeptide-based chiral stationary phases, along with various methods to determine the elution order without isolation of the individual enantiomers. In the preliminary screening, four macrocyclic glycopeptide-based chiral stationary phases containing vancomycin (Chirobiotic V), ristocetin A (Chirobiotic R), teicoplanin (Chirobiotic T), and teicoplanin-aglycone (Chirobiotic TAG) were screened in polar organic and reversed-phase mode. Best results were achieved by using Chirobiotic TAG column and a methanol-water mixture as mobile phase. Further method optimization was performed using a face-centered central composite design to achieve the highest chiral resolution. Optimized parameters, offering baseline separation (resolution = 1.91 ± 0.03) were as follows: Chirobiotic TAG stationary phase, thermostated at 10°C, mobile phase consisting of methanol/20mM ammonium acetate 60:40 v/v, and 0.6 mL/min flow rate. Enantiomer elution order was determined using HPLC hyphenated with circular dichroism (CD) spectroscopy detection. The online CD signals of the separated pantoprazole enantiomers at selected wavelengths were compared with the structurally analogous esomeprazole enantiomer. For further verification, the inline rapid, multiscan CD signals were compared with the quantum chemically calculated CD spectra. Furthermore, docking calculations were used to investigate the enantiorecognition at molecular level. The molecular docking shows that the R-enantiomer binds stronger to the chiral selector than its antipode, which is in accordance with the determined elution order on the column—S- followed by the R-isomer. Thus, combined methods, HPLC-CD and theoretical calculations, are highly efficient in predicting the elution order of enantiomers.  相似文献   

12.
Rao RN  Kumar KN  Naidu CG 《Chirality》2012,24(8):652-660
Liquid chromatographic separation of darunavir enantiomers on covalently bonded and physically adsorbed polysaccharide chiral stationary phases was studied at different temperatures. The separations were accomplished under normal-phase conditions by using different combinations of hexane, organic modifiers (2-propanol, 1-propanol and ethanol), and diethylamine as mobile phase solvents. The effect of organic modifiers and the column temperature on retention, separation, and resolution was investigated. The observed differences were explained in terms of the coated and immobilized nature of the two columns. Van't Hoff plots (ln k' vs. 1/T, ln α vs. 1/T) and apparent thermodynamic parameters were derived to understand the effect of temperature on separation.  相似文献   

13.
Chen X  Zou H  Yang L  Wang H  Zhang Q 《Chirality》2000,12(8):621-626
Microcrystalline celluloses from two sources were used to prepare cellulose triacetate chiral stationary phases (CSPs) coated on underivatized silica gel, which shows discriminating chiral recognition for enantiomers. The chiral separation of four alpha-alkyl phenyl acetonitriles was investigated on the prepared CSPs. It was observed that the concentration of the coating solvent of phenol in dichloromethane plays an important role in the resolution of the solutes. A series of primary alcohols, including secondary and tertiary alcohols, were used as mobile phase modifiers to investigate the effect of the structures of these modifiers on the capacity factors (k') and the separation factors (alpha). Also, the effect of the concentration of alcohol on the capacity factors and separation factors was examined. The chiral recognition mechanism of alpha-alkyl phenyl acetonitriles on the prepared CSPs is discussed. Copyright 2000 Wiley-Liss, Inc.  相似文献   

14.
Supercritical fluid chromatography (SFC) is already used for enantioseparation in the pharmaceutical industry, but it is rarely used for the separation of chiral pesticides. Comparing with high performence liquid chromatography, SFC uses much more environmnetal friendly and economic mobile phase, supercritical CO2. In our work, the enantioseparation of an amide herbicide, napropamide, using three different polysaccharide‐type chiral stationary phases (CSPs) in SFC was investigated. By studying the effect of different CSPs, organic modifiers, temperature, back‐pressure regulator pressures, and flow rates for the enantioseparation of napropamide, we established a rapid and green method for enantioseparation that takes less than 2 minutes: The column was CEL2, the mobile phase was CO2 with 20% 2‐propanol, and the flow rate was 2.0 mL/min. We found that CEL2 demonstrated the strongest resolution capability. Acetonitrile was favored over alcoholic solvents when the CSP was amylose and 2‐propanol was the best choice when using cellulose. When the concentration of the modifiers or the flow rate was decreased, resolutions and analysis times increased concurrently. The temperature and back‐pressure regulator pressure exhibited only minor influences on the resolution and analysis time of the napropamide enantioseparations with these chiral columns. The molecular docking analysis provided a deeper insight into the interactions between the enantiomers and the CSPs at the atomic level and partly explained the reason for the different elution orders using the different chiral columns.  相似文献   

15.
This paper describes the enantiorecognition of (±)nicotine and (±)nornicotine by high-performance liquid chromatography using two derivatized cellulose chiral stationary phases (CSPs) operated in the normal phase mode. It was found that different substituents linked to the cellulose backbone significantly influence the chiral selectivity of the derivatized CSP. The results showed that, in general, the tris(4-methylbenzoyl) cellulose CSP (Chiralcel OJ) surpasses tris(3,5-dimethylphenyl carbamoyl) cellulose CSP (Chiralcel OD). On the former column, the resolution (±)nicotine and (±)nornicotine enantiomers depended largely on mobile phase compositions. For the separation of the nicotine enantiomers, the addition of trifluoroacetic acid to a 95:5 hexane/alcohol mobile phase greatly improved the enantioresolution, probably due to enhanced hydrogen bonding interactions between the protonated analytes and the CSP. For (±)nornicotine separation, a reduction in the concentration of alcohol in the mobile phase was more effective than the addition of trifluoroacetic acid. Possible solute-mobile phase-stationary phase interactions are discussed to explain how different additives in the mobile phase and different substituents on the cellulose glucose units of the CSPs affect the separation of both pairs of enantiomers. Chirality 10:364–369, 1998. Published 1998 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    16.
    Subcritical fluid chromatography (SubFC) using a carbon dioxide-methanol mobile phase is used for the chiral resolution of IIb/IIIa receptor antagonist enantiomers. The chiral resolution of three analogs, each containing two chiral centers, is optimized using various mobile phase additives. The effects that acidic, basic, and neutral additives have on retention, efficiency, and resolution are examined. The additive that gives the best resolution was found to be dependent upon the functionality and charge of the chiral analyte. For charged analytes, additives that act as competing ions of the same charge as the chiral analyte dramatically improve efficiency and resolution. Resolution of neutral chiral analyte enantiomers is also greatly affected by the choice of mobile phase additive. Chirality 10:338–342, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

    17.
    Valacyclovir, a potential prodrug for the treatment of patients with herpes simplex and herpes zoster, and its analogs were resolved on two chiral stationary phases (CSPs) based on (3,3’‐diphenyl‐1,1’‐binaphthyl)‐20‐crown‐6 covalently bonded to silica gel. In order to find out an appropriate mobile phase condition, various mobile phases consisting of various organic modifiers in water containing various acidic modifiers were applied to the resolution of valacyclovir and its analogs. When 30% acetonitrile in water containing any of 0.05 M, 0.10 M, or 0.15 M perchloric acid was used as a mobile phase, valacyclovir and its analogs were resolved quite well on the two CSPs with the separation factors (α) in the range of 2.49 ~ 6.35 and resolutions (RS) in the range of 2.95 ~ 12.21. Between the two CSPs, the CSP containing residual silanol protecting n‐octyl groups on the silica surface was found to be better than the CSP containing residual silanol groups. Chirality 27:268–273, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

    18.
    A novel vancomycin silica hydride stationary phase was synthesized and the particles of 1.8 µm were packed into fused silica capillaries of 75 µm internal diameter (I.D.). The chiral stationary phase (CSP) was tested for the separation of some derivatized amino acid enantiomers by using nano‐liquid chromatography (nano‐LC). Some experimental parameters such as the type and the content of organic modifier, the pH, and the concentration of the buffer added to the mobile phase were modified and the effect on enantioselectivity, retention time, and enantioresolution factor was studied. The separation of selected dansyl amino acids (Dns‐AAs), e.g., Asp, Glu, Leu, and Phe in their enantiomers was initially achieved utilizing a mobile phase containing 85% (v/v) methanol (MeOH) and formate buffer measuring the enantioresolution factor and enantioselectivity in the range 1.74–4.17 and 1.39–1.59, respectively. Better results were obtained employing a more polar organic solvent as acetonitrile (ACN) in the mobile phase. Optimum results (Rs 1.41–6.09 and α 1.28–2.36) were obtained using a mobile phase containing formate buffer pH 2.5/water/MeOH/ACN 6:19:12.5:62.5 (v/v/v/v) in isocratic elution mode at flow rate of 130 nL/min. Chirality 27:767–772, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

    19.
    Pharmaceutical companies worldwide tend to apply chiral chromatographic separation techniques in their mass production strategy rather than asymmetric synthesis. The present work aims to investigate the predictability of chromatographic behavior of enantiomers using DryLab HPLC method development software, which is typically used to predict the effect of changing various chromatographic parameters on resolution in the reversed phase mode. Three different types of chiral stationary phases were tested for predictability: macrocyclic antibiotics‐based columns (Chirobiotic V and T), polysaccharide‐based chiral column (Chiralpak AD‐RH), and protein‐based chiral column (Ultron ES‐OVM). Preliminary basic runs were implemented, then exported to DryLab after peak tracking was accomplished. Prediction of the effect of % organic mobile phase on separation was possible for separations on Chirobiotic V for several probes: racemic propranolol with 97.80% accuracy; mixture of racemates of propranolol and terbutaline sulphate, as well as, racemates of propranolol and salbutamol sulphate with average 90.46% accuracy for the effect of percent organic mobile phase and average 98.39% for the effect of pH; and racemic warfarin with 93.45% accuracy for the effect of percent organic mobile phase and average 99.64% for the effect of pH. It can be concluded that Chirobiotic V reversed phase retention mechanism follows the solvophobic theory. Chirality 25:506–513, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

    20.
    A direct, isocratic, and simple chromatographic method is described for the resolution of racemic albuterol using the α1-acid glycoprotein chiral stationary phase (AGP-CSP) under reverse phase conditions. The effect of various organic modifiers, temperature, and phosphate buffer ionic strength on the separation factor (α) and stereochemical resolution factor (Rs) has been studied. The enantiomeric separation of albuterol was also achieved using a urea-type CSP of (S)-indoline-2-carboxylic acid and (R)-1-(α-naphthyl)ethylamine, known as Chirex 3022, running in the normal phase mode. The effect of different organic acids added to the mobile phase was examined and the chiral recognition mechanism(s) is discussed. Solid phase extraction with C18 Sep-Pak cartridges was applied as a clean-up step to determine the enantiomeric ratio between (?)-R and (+)-S-albuterol in pharmaceutical formulations and in human plasma. © 1995 Wiley-Liss, Inc.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号