首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Analysis of female meiosis (megasporogenesis) and embryo sac development (megagametogenesis) in angiosperms is technically challenging because the cells are enclosed within the nucellus and ovule tissues of the female flower. This is in contrast to male sporogenesis and gametogenesis where development can readily be observed through the easily dissectable developing anthers. Observation of embryo sac development is a particular problem in crassinucellate ovules such as those of maize. To overcome the problems in observing reproductive development, we developed a simple Feulgen staining procedure optimized for use with confocal microscopy to observe reproductive progression in the crassinucellate ovules of maize. The procedure greatly facilitates the observation of nuclei and cell structures of all stages of megasporogenesis and embryo sac development. The high resolution obtained using the technique enabled us to readily visualize chromosomes from individual cells within ovule tissue samples of maize. A propidium iodide staining technique was also used and compared with the Feulgen-based technique. Static cytometry of relative DNA content of individual nuclei was possible using Imaris software on both Feulgen and propidium iodide-stained samples. The techniques also proved successful for the observation of Arabidopsis and Hieracium aurantiacum female gametophyte and seed development, demonstrating the general applicability of the techniques. Using both staining methods, we analysed the maize meiotic mutant elongate1, which produces functional diploid instead of haploid embryo sacs. The precise defect in meiosis from which diploid embryo sacs arise in elongate1 has not previously been reported. We used confocal microscopy followed by static cytometry using Imaris software to show that the defect by which diploid embryo sacs arise in the maize mutant elongate1 is the absence of meiosis II with one of the dyad cells directly initiating megagametogenesis.  相似文献   

3.
In Arabidopsis thaliana, the female gametophyte is a highly polarized structure consisting of four cell types: one egg cell and two synergids, one central cell, and three antipodal cells. In this report, we describe the characterization of a novel female gametophyte mutant, eostre, which affects establishment of cell fates in the mature embryo sac. The eostre phenotype is caused by misexpression of the homeodomain gene BEL1-like homeodomain 1 (BLH1) in the embryo sac. It is known that BELL-KNAT proteins function as heterodimers whose activities are regulated by the Arabidopsis ovate family proteins (OFPs). We show that the phenotypic effect of BLH1 overexpression is dependent upon the class II knox gene KNAT3, suggesting that KNAT3 must be expressed and functional during megagametogenesis. Moreover, disruption of At OFP5, a known interactor of KNAT3 and BLH1, partially phenocopies the eostre mutation. Our study indicates that suppression of ectopic activity of BELL-KNOX TALE complexes, which might be mediated by At OFP5, is essential for normal development and cell specification in the Arabidopsis embryo sac. As eostre-1 embryo sacs also show nuclear migration abnormalities, this study suggests that a positional mechanism might be directing establishment of cell fates in early megagametophyte development.  相似文献   

4.
5.
The microtubular and actin cytoskeletons have been investigated during megagametogenesis in Arabidopsis thaliana using immunofluorescence labelling of isolated coenocytic and mature embryo sacs. We found both actin and microtubules (MTs) to occur in abundance throughout megagametogenesis and in all constituent cells of the mature embryo sac. During many stages, the patterns of distribution of these cytoskeletal elements are congruent and may prove to be co-aligned. Many changes in the arrays of MTs and microfilaments take place and indicate varying roles of the cytoskeleton in the different stages and cell types of megagametogenesis. Two major populations of MTs recur throughout embryo sac formation: (1) Elaborate nuclear-based networks are found during the two-nucleate and four-nucleate developmental stages as well as in the egg cell. These arrays may function in positioning the nuclei. (2) Cytoplasmic MTs in longitudinal orientation in the two-nucleate embryo sac, synergids and part of the egg cell, or in a reticulate pattern in the four-nucleate embryo sac, egg and central cell probably participate in organization of the cytoplasm. Synergid MTs converge at the filiform apparatus. Preprophase bands of MTs are absent throughout megagametogenesis but phragmoplast arrays occur during cellularization of the embryo sac. Well developed arrays of cortical MTs are restricted to the antipodal cells. A large concentration of MTs in the part of the egg cell adjacent to the synergids is well placed for being involved with sperm cell movement within the degenerative synergid. On the basis of the morphology of the cytoskeleton, we concur with views that the shape of megagametophyte is largely determined by the surrounding tissues, including the integumentary tapetum.  相似文献   

6.
By screening about 70 000 embryo sacs (ES) of Nicotiana from diverse genotypes, including commercial cultivars, fertile and cytoplasmic male sterile lines, mutant and hybrid forms, we estimated the range of variation in the structural organization of the megagametophyte. According to the extent of expression of the major morphological traits, ES were classified into normal, subnormal, and anomalous with incomplete and complete development. A comparative analysis of cytological variations led us to conclusion that the changes in the megagametophyte morphology resulted from some distortion of one or several crucial events at such stages of megagametogenesis as mitotic division, polarization, cytokinesis, and cell differentiation.  相似文献   

7.
 In a previous study of the function of a pollen-expressed receptor kinase of Petunia inflata, PRK1, it was found that transgenic plants carrying an antisense-PRK1 gene were unable to transmit the transgene through either the male or, unexpectedly, the female. In this report, the nature of this female phenotype was studied using one of the transgenic plants, ASRK-13. Electron and light microscopic examination of the embryo sac and seed development of ASRK-13 and a wild-type plant revealed that embryo sac development of approximately half of the ovules of ASRK-13 was abnormal. The development of the affected embryo sacs was arrested at the late stages of megagametogenesis. The majority of the affected embryo sacs completed three rounds of mitosis normally, but failed to progress through the maturation stages when cell expansion, nuclear migration, and differentiation take place. The remaining small number of abnormal embryo sacs were arrested at either the four- or eight-nucleate stages. The ovules containing the defective embryo sacs apparently failed to be fertilized, resulting in degeneration of half of the seeds produced by ASRK-13. RNA gel blot analysis suggests that the PRK1 gene is expressed in the ovary, albeit at a much lower level than in the anther. The possibility that the antisense PRK1 gene is responsible for the abnormal embryo sac development is discussed. Received: 25 April 1997 / Revision accepted: 25 June 1997  相似文献   

8.
Summary Megasporogenesis and megagametogenesis of Plumbago zeylanica were studied using isolated megasporocytes, megaspores, and embryo sacs labeled with Hoechst 33258 for nuclear and organellar (presumably plastid) DNA. Megasporogenesis conforms to the tetrasporic Plumbago type, producing a coenomegaspore with four megaspore nuclei. Organeller DNA is polarized in the micropylar end of the coenomegaspore and embryo sac, reflecting the site of egg cell formation. The three remaining nuclei are somewhat displaced to the chalazal pole, producing a variable number of accessory cells and a 4N secondary central cell nucleus. Ultimately, the mature embryo sac consists of two to five cells including an egg cell, a central cell, zero to two lateral cells, and zero to one antipodal cell depending on the degeneration of the lateral or chalazal nuclei during megagametogenesis.  相似文献   

9.
Embryo sac abortion is one of the major reasons for sterility in indica/japonica hybrids in rice. To clarify the causal mechanism of embryo sac abortion, we studied the female gametophyte development in two indica/japonica hybrids via an eosin B staining procedure for embryo sac scanning using confocal laser scanning microscope. Different types of abnormalities occurred during megasporogenesis and megagametogenesis were demonstrated. The earliest abnormality was observed in the megasporocyte. A lot of the chalazal-most megaspores were degenerated before the mono-nucleate embryo sac stage. Disordered positioning of nucleus and abnormal nucellus tissue were characteristics of the abnormal female gametes from the mono-nucleate to four-nucleate embryo sac stages. The abnormalities that occurred from the early stage of the eight-nucleate embryo sac development to the mature embryo sac stage were characterized by smaller sizes and wrinkled antipodals. Asynchronous nuclear migration, abnormal positioning of nucleus, and degeneration of egg apparatus were also found at the eight-nucleate embryo sac stage. The abnormalities that occurred during female gametophyte development resulted in five major types of abnormal embryo sacs. These abnormal embryo sacs led to abnormal fertilization. Hand pollination using normal pollens on the spikelets during anthesis showed that normal pollens could not exclude the effect of abnormal embryo sac on seed setting.  相似文献   

10.
对韭菜开花前1天左右的子房进行培养可获得大量的单倍体植株。观察表明单倍体植株起源于未受精的卵细胞和反足细胞。为了探索培养不同发育时期的子房对单倍体原胚发生频率的影响,我们又对大孢子母细胞时期的幼  相似文献   

11.
RNA helicases are adenosine tri-phosphatases that unwind the secondary structures of RNAs and are required in almost any aspect of RNA metabolism. They are highly conserved from prokaryotic to eukaryotic organisms. However, their precise roles in plant physiology and development remain to be clarified. Here we report that the mutation in the gene SLOW WALKER3 {SWA3) results in the slow and retarded progression of mitosis during megagametogenesis in Arabidopsis. SWA3 is a putative RNA helicase of the DEAD-box subfamily. Mutant megagametophyte development is arrested at four-or eight-nucleate stages, furthermore, one of the synergids in about half of the mutant embryo sacs displays abnormal polarity, with its nucleus locating at the chalazal end, instead of the micropylar end in the wild-type. Transmission of the mutation through female gametophytes is severely reduced in swa3. However, a small portion of mutant embryo sacs are able to develop into mature and functional female gametophytes when pollination was postponed. The SWA3 in Arabidopsis is a homolog of Dbp8 in yeast. Dbp8 interacts with Efs2 and is essential for biogenesis of 18S rRNA in yeast. Our data suggest that SWA3 may form a complex with AtEfs2 and take roles in ribosomal biogenesis as RNA helicase during megagametogenesis in Arabidopsis.  相似文献   

12.
Phillips AR  Evans MM 《Genetics》2011,187(4):1085-1097
Many higher eukaryotes have evolved strategies for the maternal control of growth and development of their offspring. In higher plants this is achieved in part by postmeiotic gene activity controlling the development of the haploid female gametophyte. stunter1 (stt1) is a novel, recessive, maternal effect mutant in maize that displays viable, miniature kernels. Maternal inheritance of stt1 results in seeds with reduced but otherwise normal endosperms and embryos. The stt1 mutation displays reduced transmission through the male and female parents and causes significant changes in the sizes of both male and female gametophytes. stt1 pollen grains are smaller than wild type, have reduced germination efficiency, and reduced pollen tube growth. stt1 embryo sacs have smaller central cells and abnormal antipodal cells that are larger, more vacuolated, and fewer in number than wild type. Embryos and endosperms produced by fertilization of stt1 embryo sacs develop and grow more slowly than wild type. The data suggest that the morphology of mutant embryo sacs influences endosperm development, leading to the production of miniature kernels in stt1. Analysis of seeds carrying a mutant maternal allele of stt1 over a deletion of the paternal allele demonstrates that both parental alleles are active after fertilization in both the endosperm and embryo. This analysis also indicates that embryo development until the globular stage in maize can proceed without endosperm development and is likely supported directly by the diploid mother plant.  相似文献   

13.
14.
Embryo sac formation is a fundamental step in sexual reproduction in plants. However, the key players involved in the development of the female gametophyte remain elusive. We present data indicating that a two-component sensor histidine kinase, CKI1, originally implicated in cytokinin perception, is required for completion of megagametogenesis in Arabidopsis. We isolated a loss-of-function mutation in CKI1 resulting from an insertion of the En-1 transposon into the CKI1 coding sequence. Genetic analysis revealed that the mutant allele, cki1-i, could not be transmitted through the female germ line. Confocal laser scanning microscopy identified a block in megagametogenesis, characterized by the abortion of the central vacuole in mutant embryo sacs, and degradation of the developing female gametophyte after completion of all mitotic divisions. The recovery of two independent stable alleles and one revertant wild-type allele resulting from En-1 excision confirmed unambiguously the causal link between the cki1-i mutation and the abnormal phenotype. In situ localization of CKI1 mRNA and histochemical analysis of stable transformants harboring the uidA gene under the control of CKI1 promoter revealed that expression of CKI1 starts at the very beginning of female gametophyte development, and continues until fertilization. This suggests that the developing embryo sac may remain sensitive to signals recognized by CKI1 throughout megagametogenesis. Furthermore, expression of the paternally transmitted CKI1 was detected early after fertilization. The results indicate a role for a two-component signaling system during female gametophyte development, and provide the first evidence that gametophytic expression of a sensor-like molecule is essential for specific processes during megagametogenesis.  相似文献   

15.
The developmental stages of the maize embryo sac were correlated with the corresponding silk lengths of ear florets in the female inflorescence. The development of embryo sacs in the ovules of spikes occurs in a gradient pattern with the initiation of the embryo sac beginning at the base of the ear and progressing to the top. At the beginning of meiosis, the presence of conspicuous cortical microtubules coincides with the extensive elongation of the megasporocyte. The spindles at metaphase I and II align along the long axis of the megasporocyte leading to the linear alignment of the dyad and tetrad of megaspores. During megagametogenesis, micropylar and chalazal nuclei of the embryo sac undergo synchronized divisions and migration at the second and third mitosis. Radiate perinuclear microtubules are present during the interphase of the second and third mitosis, and inter-sister nuclear microtubules occur at the late four-nucleate embryo sac. The configuration and orientation of the spindles, phragmoplasts, and pairs of nuclei result in precise positioning of the nuclei. The fusion of the polar nuclei and the formation of a microtubule organizing center-like structure in the filiform apparatus occur right after the first division of the antipodal cells. The different patterns of organization of microtubules in the cells of the mature embryo sac reflect their structural adaptations for their future function.  相似文献   

16.
Arabidopsis thaliana has been widely used as a model plant in gene function analysis. However, its tiny flower and curved embryo sac make it difficult to study gene expression during megagametogenesis, fertilization, and early embryogenesis, especially in the screening of mutants from those developmental processes. The techniques currently available are sectioning and whole-mount clearing of ovules; however, sectioning is time consuming and laborious for quantitative analysis, and whole-mount clearing, makes clear cytological observation impossible. Reported here is a simple and efficient method based on enzymatic isolation of embryo sacs that enables both quantitative analysis and elaborate cytological observation for gene expression investigation and mutant screening.  相似文献   

17.
Huang BQ  Sheridan WF 《The Plant cell》1996,8(8):1391-1407
The indeterminate gametophyte1 mutation in maize has been known to disrupt development of the female gametophyte. Mutant embryo sacs have abnormal numbers and behavior of micropylar and central cell nuclei, which result in polyembryony and elevated ploidy levels in the endosperm of developing kernels. In this study, we confirm abnormal nuclear behavior and present novel findings. In contrast to the normal form, there is no obvious polarity in two-nucleate embryo sacs or in the micropylar cells of eight-nucleate embryo sacs. We show that the second and third mitoses are not fully synchronized and that additional mitoses can occur in all of the nuclei of the mutant embryo sac or in just the micropylar or central regions. After cellularization, individual micropylar cells can undergo mitosis. Abnormal microtubular behavior results in irregular positioning of the nuclei, asynchronous microtubular patterns in different pairs of nuclei, and abnormal phragmoplasts after the third mitotic division. These results indicate that in addition to acting primarily in controlling nuclear divisions, the indeterminate gametophyte1 gene acts secondarily in regulating microtubule behavior. This cytoskeletal activity most likely controls the polarization and nuclear migration underlying the formation and fate of the cells of the normal embryo sac.  相似文献   

18.
五唇兰(Doritispulcherrima Lindl.)的胚珠属于倒生型,具薄珠心,两层珠被.胚囊发育类型为双孢子葱型,授粉后约45 d形成七细胞八核的成熟胚囊.五唇兰未受精胚珠在离体培养初期对外源激素的依赖性很小,在没有外源激素的培养基上,大孢子母细胞也能经过减数分裂发育为二核胚囊.在培养后期,外源激素对胚囊发育的影响很大.在培养基无外源激素或仅含生长素或细胞分裂素时,雌配子体的发生过程不能顺利完成;在改良VW培养基上添加0.5 mg/L BA和0.1 mg/LNAA时,形成成熟胚囊.  相似文献   

19.
Ovule development and ovule and fruit success were investigated in Iris tenax var. tenax and I. tenax var. gormanii. Ovule development, including megasporogenesis and initial stages of megagametogenesis, occurred while flowers were still in bud. Final maturation of the seven-celled embryo sac occurred during the male phase of flowering. An earlier report that synergids persist after fertilization, and that nucellar nuclei migrate into the developing megagametophyte in I. tenax var. tenax, was not supported in the present study. Reproductive studies used two pollination treatments: outcrossing and selfing. Treatment results were compared with results from open pollination. Both varieties of I. tenax are self-compatible. Results showed that <5% of I. tenax var. gormanii ovules develop into seeds with open pollination, supporting earlier reports of low seed set. Hand pollinations improved reproductive success, suggesting that pollen may be limiting in nature.  相似文献   

20.
Arabidopsis hapless mutations define essential gametophytic functions   总被引:9,自引:0,他引:9  
In flowering plants, the egg develops within a haploid embryo sac (female gametophyte) that is encased within the pistil. The haploid pollen grain (male gametophyte) extends a pollen tube that carries two sperm cells within its cytoplasm to the embryo sac. This feat requires rapid, precisely guided, and highly polarized growth through, between, and on the surface of the cells of the stigma, style, and ovary. Pollen tube migration depends on a series of long-range signals from diploid female cells as well as a short-range attractant emitted by the embryo sac that guides the final stage of tube growth. We developed a genetic screen in Arabidopsis thaliana that tags mutant pollen with a cell-autonomous marker carried on an insertion element. We found 32 haploid-disrupting (hapless) mutations that define genes required for pollen grain development, pollen tube growth in the stigma and style, or pollen tube growth and guidance in the ovary. We also identified genomic DNA flanking the insertion element for eleven hap mutants and showed that hap1 disrupts AtMago, a gene whose ortholog is important for Drosophila cell polarity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号