首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Marine prosthecate bacteria involved in the ennoblement of stainless steel   总被引:2,自引:0,他引:2  
Ennoblement, a phenomenon in which open-circuit potential is elevated to a noble value, triggers metal corrosion in the environment and is considered to be biologically catalysed. This study investigated the involvement of marine microorganisms in the ennoblement of stainless steel coupons in sea water pumped from Kamaishi Bay. Scanning electron microscopy (SEM) showed significant attachment of prosthecate bacteria on the surfaces of stainless steel coupons in the course of ennoblement. In denaturing gradient gel electrophoresis (DGGE) analyses of polymerase chain reaction-amplified bacterial 16S rDNA fragments, several major bands were detected from the surface of the ennobled coupons, including those affiliated with the alpha and gamma subclasses of the Proteobacteria. After these observations, bacterial strains were isolated from the surface of the ennobled coupon. The 16S rDNA analysis revealed that a bacterial isolate (designated PWB3) corresponded to a major DGGE band representing an alpha-Proteobacterial population; a database analysis showed that its closest relative was Rhodobium spp., albeit with low homology ( approximately 89%). SEM indicated that this bacterium was a prosthecate bacterium that was morphologically similar to those observed on the ennobled coupons. In pure culture of strain PWB3, stainless steel coupons were ennobled when the culture was supplemented with MnCl2. Manganese was recovered from the surface of the ennobled coupons after treatment with a reducing agent. These results suggest that the attachment of manganese-oxidizing prosthecate bacteria triggered the ennoblement of stainless steel in Kamaishi Bay sea water.  相似文献   

2.
The noble shift in open-circuit potential exhibited by microbially colonized stainless steel (ennoblement) was investigated by examining the relationship among surface colonization, manganese deposition, and open-circuit potential for stainless steel coupons exposed to batch cultures of the manganese-depositing bacterium Leptothrix discophora. Open-circuit potential shifted from -100 to +330 mV(infSCE) as a biofilm containing 75 nmol of MnO(infx) cm(sup-2) formed on the coupon surface but changed little further with continued MnO(infx) deposition up to 270 nmol cm(sup-2). Increased open-circuit potential corresponded to decreasing Mn(II) concentration in solution and to increased MnO(infx) accumulation and attached cell density on the coupon surfaces. MnO(infx) deposition was attributable to biological activity, and Mn(II) was observed to enhance cell attachment. The experimental results support a mechanism of ennoblement in which open-circuit potential is fixed near +350 mV(infSCE) by the cathodic activity of biomineralized MnO(infx).  相似文献   

3.
To investigate the effects of pipe materials on biofilm accumulation and water quality, an annular reactor with the sample coupons of four pipe materials (steel, copper, stainless steel, and polyvinyl chloride) was operated under hydraulic conditions similar to a real plumbing system for 15 months. The bacterial concentrations were substantially increased in the steel and copper reactors with progression of corrosion, whereas those in stainless steel (STS) and polyvinyl chloride (PVC) reactors were affected mainly by water temperature. The heterotrophic plate count (HPC) of biofilms was about 100 times higher on steel pipe than other pipes throughout the experiment, with the STS pipe showing the lowest bacterial number at the end of the operation. Analysis of the 16S rDNA sequences of 176 cultivated isolates revealed that 66.5% was Proteobacteria and the others included unclassified bacteria, Actinobacteria, and Bacilli. Regardless of the pipe materials, Sphingomonas was the predominant species in all biofilms. PCR-DGGE analysis showed that steel pipe exhibited the highest bacterial diversity among the metallic pipes, and the DGGE profile of biofilm on PVC showed three additional bands not detected from the profiles of the metallic materials. Environmental scanning electron microscopy showed that corrosion level and biofilm accumulation were the least in the STS coupon. These results suggest that the STS pipe is the best material for plumbing systems in terms of the microbiological aspects of water quality.  相似文献   

4.
The reduction of bacterial biofilm formation on stainless steel surfaces by N-acetyl-L-cysteine (NAC) is attributed to effects on bacterial growth and polysaccharide production, as well as an increase in the wettability of steel surfaces. In this report, we show that NAC-coated stainless steel and polystyrene surfaces affect both the initial adhesion of Bacillus cereus and Bacillus subtilis and the viscoelastic properties of the interaction between the adhered bacteria and the surface. A quartz crystal microbalance with dissipation was shown to be a powerful and sensitive technique for investigating changes in the applied NAC coating for initial cell surface interactions of bacteria. The kinetics of frequency and dissipation shifts were dependent on the bacteria, the life cycle stage of the bacteria, and the surface. We found that exponentially grown cells gave rise to a positive frequency shift as long as their cell surface hydrophobicity was zero. Furthermore, when the characteristics of binding between the cell and the surface for different growth phases were compared, the rigidity increased from exponentially grown cells to starved cells. There was a trend in which an increase in the viscoelastic properties of the interaction, caused by the NAC coating on stainless steel, resulted in a reduction in irreversibly adhered cells. Interestingly, for B. cereus that adhered to polystyrene, the viscoelastic properties decreased, while there was a reduction in adhered cells, regardless of the life cycle stage. Altogether, NAC coating on surfaces was often effective and could both decrease the initial adhesion and increase the detachment of adhered cells and spores. The most effective reduction was found for B. cereus spores, for which the decrease was caused by a combination of these two parameters.  相似文献   

5.
AIMS: To compare the number of attached Shewanella putrefaciens on stainless steel with different silver surfaces, thus evaluating whether silver surfaces could contribute to a higher hygienic status in the food industry. METHODS AND RESULTS: Bacterial adhesion to three types of silver surface (new silver, tarnished silver and sulphide-treated silver) was compared with adhesion to stainless steel (AISI 316) using the Malthus indirect conductance method to estimate the number of cfu cm(-2). The number of attached bacteria on new silver surfaces was lower than on steel for samples taken after 24 h. However, this was not statistically significant (P > 0.05). The numbers of attached bacteria were consistently lower when tarnished silver surfaces were compared with stainless steel and some, but not all, experiments showed statistical significance (P < 0.05). Treating new silver with sulphide to reproduce a tarnished silver surface did not result in a similar lowering of adhering cells when compared with steel (P > 0.05). CONCLUSIONS: New or tarnished silver surfaces caused a slight reduction in numbers of attached bacteria; however, the difference was only sometimes statistically significant. SIGNIFICANCE AND IMPACT OF THE STUDY: The lack of reproducibility in differences in numbers adhering to the different surfaces and lack of statistical significance between numbers of adhered viable bacteria do not indicate that the tested silver surfaces can be used to improve hygienic characteristics of surfaces in the food industry.  相似文献   

6.

Bacterial adhesion on stainless steel may cause problems such as microbially induced corrosion or represent a chronic source of microbial contamination. The investigation focussed on how the extent and patterns of four bacterial species comprising three different phyla and a broad variety of physicochemical characteristics was influenced by the surface topography of AISI 304 stainless steel. Five types of surface finish corresponding to roughness values R a between 0.03 and 0.89 w m were produced. Adhesion of all four bacteria was minimal at R a =0.16 w m, whereas smoother and rougher surfaces gave rise to more adhesion. This surface exhibited parallel scratches of 0.7 w m, in which a high proportion of bacteria of three of the strains aligned. Reduced overall adhesion was attributed to unfavorable interactions between this surface and bacteria oriented other than parallel to the scratches. Interaction energy calculations and considerations of micro-geometry confirmed this mechanism. Rougher surfaces exhibiting wider scratches allowed a higher fraction of bacteria to adhere in other orientations, whereas the orientation of cells adhered to the smoothest surface was completely random.  相似文献   

7.
Changes which occur on the surface of mild steel coupons submerged in cultures of an Fe(III)-reducing bacterium, isolated from corroded pipe systems carrying crude oil, were studied microscopically to investigate the interaction between the corrosion-causing bacterium and the corroding mild steel coupon. Under micro-aerobic conditions and in the absence of the bacteria, a dense, crystalline, amorphous coat formed on the surface of the steel coupons. In the presence of bacteria the surface coat was extensively removed, exposing the bare metal to the environment. After about 2 weeks of exposure, the removal of the surface coating was followed by colonization of the metal surface by the bacteria. Colonization was mediated by fibrous, exopolysaccharidic material formed by the bacteria. Extension of studies to other bacteria isolated from crude oil and corroded pipes reveals that the formation of exopolysaccharide fibers and possession of adherent properties are common characteristics of bacteria from crude oil systems.  相似文献   

8.
Mild steel and AISI 304 stainless steel samples were exposed to the aqueous solutions from an anaerobic biodigestor of wastewater, showing quite different behaviours. Carbon steel presented generalized corrosion whereas stainless steel, as-received or sensitized, tended to show some localized corrosion. Both materials presented bacteria attachment, particularly sulphate reducing bacteria (SRB), forming biofilms which were abundant and mixed with corrosion products on the mild steel surface and thin and patchy on stainless steel surfaces. Different types of anaerobic and aerobic bacteria were detected in the medium. Experiments were carried out both at 1 and at 7 atmospheres pressure, in presence of a gaseous phase containing N2, CO2 and CH4. Potentiodynamic experiments were conducted in order to have a better insight on the electrochemical behaviour of the material in this medium.  相似文献   

9.
N-Acetyl-L-cysteine (NAC) is used in medical treatment of patients with chronic bronchitis. The positive effects of NAC treatment have primarily been attributed to the mucus-dissolving properties of NAC, as well as its ability to decrease biofilm formation, which reduces bacterial infections. Our results suggest that NAC also may be an interesting candidate for use as an agent to reduce and prevent biofilm formation on stainless steel surfaces in environments typical of paper mill plants. Using 10 different bacterial strains isolated from a paper mill, we found that the mode of action of NAC is chemical, as well as biological, in the case of bacterial adhesion to stainless steel surfaces. The initial adhesion of bacteria is dependent on the wettability of the substratum. NAC was shown to bind to stainless steel, increasing the wettability of the surface. Moreover, NAC decreased bacterial adhesion and even detached bacteria that were adhering to stainless steel surfaces. Growth of various bacteria, as monocultures or in a multispecies community, was inhibited at different concentrations of NAC. We also found that there was no detectable degradation of extracellular polysaccharides (EPS) by NAC, indicating that NAC reduced the production of EPS, in most bacteria tested, even at concentrations at which growth was not affected. Altogether, the presence of NAC changes the texture of the biofilm formed and makes NAC an interesting candidate for use as a general inhibitor of formation of bacterial biofilms on stainless steel surfaces.  相似文献   

10.
Aims: To examine the activity of bacteria involved in cathodic depolarization and surface corrosion on stainless steel in an in situ model system. Methods and Results: The microautoradiographic technique (MAR) was used to evaluate the activity of bacterial populations on stainless steel surfaces with a single cell resolution. Anaerobic uptake and fixation of 14C‐labelled bicarbonate occurred within corrosion sites in the absence of atmospheric hydrogen or other external electron donors, whereas it was taken up and fixed by bacteria at all other stainless steel surfaces in the presence of atmospheric hydrogen. This indicates that the bacteria utilized electrons originating from the corrosion sites due to the ongoing corrosion (cathodic depolarization). Conclusion: Under in situ conditions, bacteria were fixating 14C‐labelled bicarbonate at corrosion sites in the absence of atmospheric hydrogen. This indicates that electrons transferred to the bacteria provided energy for bicarbonate fixation due to cathodic depolarization. Significance and Impact of the Study: Application of the MAR method showed ongoing biocorrosion in the applied in situ model system and allowed in situ examination of bacterial activity on a single cell level directly on a metal surface providing information about potential corrosion mechanisms. Furthermore, application of fluorescence in situ hybridization in combination with MAR allows for identification of the active bacteria.  相似文献   

11.
The relative cleanability of stainless steel, enamelled steel, mineral resin and polycarbonate domestic sink materials was assessed by comparing the number of organisms remaining on surfaces after cleaning. In unused condition all materials, other than one enamelled steel, were equally cleanable. Stainless steel, abraded artificially or impact damaged to a similar degree as stainless steel subjected to domestic wear, retained approximately one log order less bacteria after cleaning than the other materials subjected to the same treatments. Little difference in cleanability was recorded between the abraded surfaces of the other materials although enamelled steel surfaces were less cleanable than mineral resin or polycarbonate after impact damage, because of the greater susceptibility of enamelled steel to damage by this treatment. When cleaning time was extended beyond 10 s for the abraded and impact damaged materials, their cleanability was not enhanced as compared with stainless steel. Changes in surface finish after abrasion were assessed by surface roughness measurement and scanning electron microscopy. Surfaces with poor cleanability before and after abrasion were characterized by pitting, crevices or jags. These surfaces are likely to retain more bacteria because of increased numbers of attachment sites, a larger bacterial/material surface contact area and topographical areas in which applied cleaning shear forces are reduced. Materials that resist surface changes, e.g. stainless steel, will remain more hygienic when subjected to natural wear than materials which become more readily damaged.  相似文献   

12.
Biofouling and microbiologically influenced corrosion are processes of material deterioration that originate from the attachment of microorganisms as quickly as the material is immersed in a nonsterile environment. Stainless steels, despite their wide use in different industries and as appliances and implant materials, do not possess inherent antimicrobial properties. Changes in hygiene legislation and increased public awareness of product quality makes it necessary to devise control methods that inhibit biofilm formation or to act at an early stage of the biofouling process and provide the release of antimicrobial compounds on a sustainable basis and at effective level. These antibacterial stainless steels may find a wide range of applications in fields, such as kitchen appliances, medical equipment, home electronics, and tools and hardware. The purpose of this study was to obtain antibacterial stainless steel and thus mitigate the microbial colonization and bacterial infection. Copper is known as an antibacterial agent; in contrast, niobium has been demonstrated to improve the antimicrobial effect of copper by stimulating the formation of precipitated copper particles and its distribution in the matrix of the stainless steel. Thus, we obtained slides of 3.8% copper and 0.1% niobium alloyed stainless steel; subjected them to three different heat treatment protocols (550°C, 700°C, and 800°C for 100, 200, 300, and 400 hours); and determined their antimicrobial activities by using different initial bacterial cell densities and suspending solutions to apply the bacteria to the stainless steels. The bacterial strain used in these experiments was Escherichia coli CCM 4517. The best antimicrobial effects were observed in the slides of stainless steel treated at 700°C and 800°C using an initial cell density of approximately 105 cells ml−1 and phosphate-buffered saline as the solution in which the bacteria came into contact with copper and niobium–containing steel.  相似文献   

13.
The relative cleanability of artificially abraded stainless steel, enamelled steel, mineral resin and polycarbonate domestic sinks was assessed by examining bacterial retention after cleaning. Two cleaning regimes were used: the mechanical action of wiping combined with a spray-rinse, and spray-washing at a range of temperatures. After wiping, stainless steel retained 0.5–1 log order fewer bacteria than the enamel sinks which in turn were 0.5 log order cleaner than the mineral resin and polycarbonate sinks. After spray-washing, stainless steel retained 0.5 log order fewer bacteria than enamel which in turn was 0.5 log order cleaner than the polycarbonate and mineral resin. Extending the number of wipes or increasing spray-wash temperature enhanced bacterial removal but, in general, did not change the relative cleanability of the sink materials. As a cleaning technique, wiping was shown to be more effective than spray-washing in reducing bacterial numbers. SEM studies showed that bacteria were typically retained in surface imperfections, particularly pits and crevices such that surfaces which sustained the most extensive damage due to abrasion retained higher numbers of bacteria.  相似文献   

14.
AIMS: The aim of this study was to evaluate the respective influence of the physicochemical interactions and the roughness involved in the first part of the biological substrate biocontamination. METHODS AND RESULTS: Therefore we compared the bioadhesion results obtained on the biological model substrate (Episkin) and on a commonly employed inert substrate (AISI 304 stainless steel), frequently used either in dermatology or in development of medical devices. The two studied strains presented different characteristics, both physicochemical and microbiological. Staphylococcus epidermidis, a relatively hydrophobic bacteria capable of exchanging interactions which are principally of the van der Waals type, adhered more to 304 steel than to the surface of reconstituted skin. As for S. aureus, an essentially basic, hydrophilic bacteria, was more adherent to Episkin (a bipolar, hydrophilic substrate) than to stainless steel (a unipolar, basic, hydrophilic substrate). CONCLUSIONS: In the absence of electrostatic interactions, the adhesion of substrate-dependent bacteria to the surface of reconstituted skin was dependent upon the balance between gamma(LW), gamma(+) and gamma(-). SIGNIFICANCE AND IMPACT OF THE STUDY: Consequently, so as to restrict microbial adhesion and reduce adhesive binding between micro-organisms and the surface of the skin, it would be preferable to render this substrate hydrophobic and apolar through the use of appropriate surface treatment.  相似文献   

15.
The attachment activity of microorganisms in seawater was studied by electrochemical and microscopic techniques. It was frequently observed that in natural seawater, the open circuit potential (Eocp) of stainless steel was ennobled due to biofilm formation on the metal surface. Microscope observation revealed that the ennoblement of the Eocp value of stainless steel changed linearly with the number of bacteria attached to the metal surface. Considering the fact that Eocp of copper is almost a constant for a longer time in seawater, a compound electrode was made up of a stainless steel electrode and copper electrode for assessing the attachment of microbes in different seawater media according to the change in the potential difference between the two metals. The results demonstrated a good performance of the compound electrode for this purpose.  相似文献   

16.
Environmental scanning electron microscopy (ESEM) and atomic force microscopy (AFM) were compared as tools for the observation of bacterial biofilms developed on carbon steel and AISI 316 stainless steel surfaces under stagnant conditions. Biofilms were generated in batch cultures of two different isolates of marine sulphate reducing bacteria (SRB) and in cultures consisting of mixed populations of acidophilic bacteria, known as "acid streamers";. Imaging of single SRB cells on mica was also carried out to reveal the surface topography of individual bacterial cells at nanometre resolution. Following the removal of biofilms, the stainless steel surfaces were profiled using AFM to determine the degree of steel deterioration. ESEM and AFM studies of bacterial biofilms in-situ, gave both qualitative and quantitative information on biofilm structure at high resolution. The use of AFM image analysis software allowed estimation of the width and height of bacterial cells, the thickness and width of exopolymeric (EPS) capsule and bacterial flagella, as well as characterisation of the surface roughness of the steel, including measurements of depth and diameter of individual pits. Exposure of stainless steel specimens to acid streamers resulted in a significant increase in the surface roughness of the steel, compared to specimens placed in sterile medium.  相似文献   

17.
Biomaterial-centered infections of orthopedic percutaneous implants are serious complications which can ultimately lead to osteomyelitis, with devastating effects on bone and surrounding tissues, especially since the biofilm mode of growth offers protection against antibiotics and since removal frequently is the only ultimate solution. Recently, it was demonstrated that as a possible pathway to prevent infections of percutaneous stainless steel implants, electric currents of 60 to 100 microA were effective at stimulating the detachment of initially adhering staphylococci from surgical stainless steel. However, initially adhering bacteria are known to adhere more reversibly than bacteria growing in the later stages of biofilm formation. Hence, the aim of this study was to examine whether a growing Staphylococcus epidermidis biofilm can be stimulated to detach from surgical stainless steel by the use of electric currents. In separate experiments, four currents, i.e., 60 and 100 microA of direct current (DC) and 60 and 100 microA of block current (50% duty cycle, 1 Hz), were applied for 360 min to stimulate the detachment of an S. epidermidis biofilm that had grown for 200 min. A 100-microA DC yielded 78% detachment, whereas a 100-microA block current under the same experimental conditions yielded only 31% detachment. The same trend was found for 60 microA, with 37% detachment for a DC and 24% for a block current. Bacteria remaining on the surface after the current application were less viable than they were prior to the current application, as demonstrated by confocal laser scanning microscopy. In conclusion, these results suggest that DCs are preferred for curing infections.  相似文献   

18.
H olah , J.T. & T horpe , R.H. 1990. Cleanability in relation to bacterial retention on unused and abraded domestic sink materials. Journal of Applied Bacteriology 69 , 599–608.
The relative Cleanability of stainless steel, enamelled steel, mineral resin and polycarbonate domestic sink materials was assessed by comparing the number of organisms remaining on surfaces after cleaning. In unused condition all materials, other than one enamelled steel, were equally cleanable. Stainless steel, abraded artificially or impact damaged to a similar degree as stainless steel subjected to domestic wear, retained approximately one log order less bacteria after cleaning than the other materials subjected to the same treatments. Little difference in Cleanability was recorded between the abraded surfaces of the other materials although enamelled steel surfaces were less cleanable than mineral resin or polycarbonate after impact damage, because of the greater susceptibility of enamelled steel to damage by this treatment. When cleaning time was extended beyond 10 s for the abraded and impact damaged materials, their Cleanability was not enhanced as compared with stainless steel. Changes in surface finish after abrasion were assessed by surface roughness measurement and scanning electron microscopy. Surfaces with poor Cleanability before and after abrasion were characterized by pitting, crevices or jags. These surfaces are likely to retain more bacteria because of increased numbers of attachment sites, a larger bacterial/material surface contact area and topographical areas in which applied cleaning shear forces are reduced. Materials that resist surface changes, e.g. stainless steel, will remain more hygienic when subjected to natural wear than materials which become more readily damaged.  相似文献   

19.
Thermophilic Bacillus species readily attached and grew on stainless steel surfaces, forming mature biofilms of >106.0 cells/cm2 in 6 h on a surface inoculated with the bacteria. Clean stainless steel exposed only to pasteurized skim milk at 55 °C developed a mature biofilm of >106.0 cells/cm2 within 18 h. When bacilli were inoculated onto the steel coupons, 18-h biofilms were 30 m thick. Biofilm growth followed a repeatable pattern, with a reduction in the numbers of bacteria on the surface occurring after 30 h, followed by a recovery. This reduction in numbers was associated with the production of a substance that inhibited the growth of the bacteria. Variations in the environment, including pH and molarity, affected the viability of the cells. Chemicals that attack the polysaccharide matrix of the biofilm were particularly effective in killing and removing cells from the biofilm, demonstrating the importance of polysaccharides in the persistence of these biofilms. Treatment of either the biofilm or a clean stainless steel surface with lysozyme killed biofilm cells and prevented the attachment of any bacteria exposed to the surface. This suggests that lysozyme may have potential as an alternative control method for biofilms of these bacteria.  相似文献   

20.
Generally speaking, a much higher concentration of biocide is needed to treat biofilms compared to the dosage used to for planktonic bacteria. With increasing restrictions of environmental regulations and safety concerns on large-scale biocide uses such as oil field applications, it is highly desirable to make more effective use of biocides. In this paper a green biocide enhancer ethylenediaminedisuccinate (EDDS) that is a biodegradable chelator, was found to enhance the efficacy of glutaraldehyde in its treatment of sulfate-reducing bacteria (SRB) biofilms. Experiments were carried out in 100 ml anaerobic vials with carbon steel coupons. The ATCC 14563 strain of Desulfovibrio desulfuricans was used. Biofilms on coupon surfaces were visualized using scanning electron microscopy (SEM). Experimental results showed that EDDS reduced the glutaraldehyde dosages considerably in the inhibition of SRB biofilm establishment and the treatment of established biofilms on carbon steel coupon surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号