首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Channel forming peptides (CFPs) are amphipathic peptides, of length ca. 20 residues, which adopt an -helical conformation in the presence of lipid bilayers and form ion channels with electrophysiological properties comparable to those of ion channel proteins. We have modelled CFP channels as bundles of parallel trans-bilayer helices surrounding a central ion-permeable pore. Ion-channel interactions have been explored via accessible surface area calculations, and via evaluation of changes in van der Waals and electrostatic energies as a K+ ion is translated along the length of the pore. Two CFPs have been modelled: (a) zervamicin-A1-16, a synthetic apolar peptaibol related to alamethicin, and (b) -toxin from Staphylococcus aureus. Both of these CFPs have previously been shown to form ion channels in planar lipid bilayers, and have been shown to have predominantly helical conformations. Zervamicin-A1-16 channels were modelled as bundles of 4 to 8 parallel helices. Two related helix bundle geometries were explored. K+channel interactions have been shown to involve exposed backbone carbonyl oxygen atoms. -Toxin channels were modelled as bundles of 6 parallel helices. Residues Q3, D11 and D18 generate favourable K+-channel interactions. Rotation of W15 about its C-C bond has been shown to be capable of occluding the central pore, and is discussed as a possible model for sidechain conformational changes in relation to ion channel gating.  相似文献   

2.
Summary Solid-state NMR spectroscopy was used to determine the orientations of two amphipathic helical peptides associated with lipid bilayers. A single spectral parameter provides sufficient orientational information for these peptides, which are known, from other methods, to be helical. The orientations of the peptides were determined using the15N chemical shift observed for specifically labeled peptide sites. Magainin, an antibiotic peptide from frog skin, was found to lie in the plane of the bilayer. M2, a helical segment of the nicotinic acetylcholine receptor, was found to span the membrane, perpendicular to the plane of the bilayer. These findings have important implications for the mechanisms of biological functions of these peptides.  相似文献   

3.
The membrane alignment of the amphiphilic α-helical model peptide MSI-103 (sequence [KIAGKIA](3)-NH(2)) was examined by solid state (2)H-NMR in different lipid systems by systematically varying the acyl chain length and degree of saturation, the lipid head group type, and the peptide-to-lipid molar ratio. In liquid crystalline phosphatidylcholine (PC) lipids with saturated chains, the amphiphilic helix changes its orientation from a surface-bound "S-state" to a tilted "T-state" with increasing peptide concentration. In PC lipids with unsaturated chains, on the other hand, the S-state is found throughout all concentrations. Using phosphatidylethanolamine lipids with a small head group or by addition of lyso-lipids with only one acyl chain, the spontaneous curvature of the bilayer was purposefully changed. In the first case with a negative curvature only the S-state was found, whereas in systems with a positive curvature the peptide preferred the obliquely immersed T-state at high concentration. The orientation of MSI-103 thus correlates very well with the shape of the lipid molecules constituting the membrane. Lipid charge, on the other hand, was found to affect only the initial electrostatic attraction to the membrane surface but not the alignment preferences. In bilayers that are "sealed" with 20% cholesterol, MSI-103 cannot bind in a well-oriented manner and forms immobilized aggregates instead. We conclude that the curvature properties of a membrane are a key factor in the interactions of amphiphilic helical peptides in general, whose re-alignment and immersion preferences may thus be inferred in a straightforward manner from the lipid-shape concept.  相似文献   

4.
The amphipathic helix plays a key role in many membrane-associating peptides and proteins. The dynamics of helices on membrane surfaces might be of importance to their function. The fluorescence anisotropy decay of tryptophan is a sensitive indicator of local, segmental, and global dynamics within a peptide or protein. We describe the use of frequency domain dynamic depolarization measurements to determine the site-specific tryptophan dynamics of single tryptophan amphipathic peptides bound to a phospholipid surface. The five 18-residue peptides studied are based on a class A amphipathic peptide that is known to associate at the interface of phospholipid bilayers. The peptides contain a single tryptophan located at positions 2, 3, 7, 12, or 14 in the sequence. Association of the peptides with egg phosphatidylcholine vesicles results in complex behavior of both the tryptophan intensity decay and the anisotropy decay. The anisotropy decays were biphasic and were fitted to an associated model where each lifetime component in the intensity decay is associated with a particular rotational correlation time from the anisotropy decay. In contrast, an unassociated model where all components of the intensity decay share common rotational modes was unable to provide an adequate fit to the data. Two correlation times were resolved from the associated analysis: one whose contribution to the anisotropy decay was dependent on the exposure of the tryptophan to the aqueous phase, and the other whose contribution reflected the position of the tryptophan in the sequence. The results are compared with existing x-ray structural data and molecular dynamics simulations of membrane-incorporated peptides.  相似文献   

5.
The mechanism of action of lytic peptides on membranes is widely studied and is important in view of potential medical applications. Previously (I. V. Polozov, A. I. Polozova, E. M. Tytler, G. M. Anantharamaiah, J. P. Segrest, G. A. Woolley, and R. M., Biochemistry, 36:9237--9245) we analyzed the mechanism of membrane permeabilization by 18L, the archetype lytic peptide featuring the class L amphipathic alpha-helix, according to the classification of Segrest et al. (J. P. Segrest, G. de Loof, J. G. Dohlman, C. G. Brouillette, and G. M. Anantharamaiah, 1990, Proteins, 8:103--117). We concluded that the 18L peptide destabilizes membranes, leading to a transient formation of large defects that result in contents leakage and, in the presence of bilayer-bilayer contact, could lead to vesicle fusion. Here we report that this defect formation is strongly enhanced by the membrane tension induced by osmotic swelling of vesicles. Even below standard leakage-inducing peptide/lipid ratios, membrane resistance to osmotic tension drops from hundreds to tens of milliosmoles. The actual decrease is dependent on the peptide/lipid ratio and on the type of lipid. We propose that under membrane tension a peptidic pore serves as a nucleation site for the transient formation of a lipidic pore. The tension is released upon pore expansion with inclusion of more peptides and lipids into the pore lining. This tension modulation of leakage was observed for other class L peptides (mastoparan, K18L) and thus may be of general applicability for the action of membrane active lytic peptides.  相似文献   

6.
Amphipathic alpha-helical peptides are perspective antimicrobial drugs. These peptides are partially embedded into the membrane to a shallow depth so that the longitudinal axis of the helix is parallel to the plane of the membrane or deviates from it by a small angle. In the framework of theory of elasticity of liquid crystals, adapted to lipid membranes, we calculated the energy of deformations occurring near the peptides partially embedded into the membrane. The energy of deformations is minimal when two peptides are parallel to each other and stay at a distance of about 5 nm. This configuration is stable with respect to small parallel displacements of the peptides and with respect to small variation of the angle between their axes both in the plane of the membrane and in the perpendicular direction. As a result of deformation the average thickness of the membrane decreases. The distribution of the elastic energy density has a maximum in the middle between the peptides. This region is the most likely place for formation of the through pores in the membrane. Since the equilibrium distance between the peptides is relatively large, it is assumed that the originally appearing pore should be purely lipidic.  相似文献   

7.
BackgroundAmphipathic cationic antimicrobial peptides (AMPs) TC19 and TC84, derived from the major AMPs of human blood platelets, thrombocidins, and Bactericidal Peptide 2 (BP2), a synthetic designer peptide showed to perturb the membrane of Bacillus subtilis. We aimed to determine the means by which the three AMPs cause membrane perturbation in vivo using B. subtilis and to evaluate whether the membrane alterations are dependent on the phospholipid composition of the membrane.MethodsPhysiological analysis was employed using Alexa Fluor 488 labelled TC84, various fluorescence dyes, fluorescent microscopy techniques and structured illumination microscopy.ResultsTC19, TC84 and BP2 created extensive fluidity domains in the membrane that are permeable, thus facilitating the entering of the peptides and the leakage of the cytosol. The direct interaction of the peptides with the bilayer create the fluid domains. The changes caused in the packing of the phospholipids lead to the delocalization of membrane bound proteins, thus contributing to the cell's destruction. The changes made to the membrane appeared to be not dependent on the composition of the phospholipid bilayer.ConclusionsThe distortion caused to the fluidity of the membrane by the AMPs is sufficient to facilitate the entering of the peptides and leakage of the cytosol.General significanceHere we show in vivo that cationic AMPs cause “membrane leaks” at the site of membrane insertion by altering the organization and fluidity of the membrane. Our findings thus contribute to the understanding of the membrane perturbation characteristic of cationic AMPs.  相似文献   

8.
The action of gramicidin S and melittin on human erythrocytes, Staphylococcus aureus and Escherichia coli was studied as an extension of the previous study (Katsu, T., Ninomiya, C., Kuroko, M., Kobayashi, H., Hirota, T. and Fujita, Y. (1988) Biochim. Biophys. Acta 939, 57-63). These amphipathic peptides stimulated the release of membrane phospholipids outside cells in a concentration range causing permeability change. The shape change of erythrocytes from normal discoid to spiculate form was observed just prior to the release of membrane components. We have proposed the following action mechanism of gramicidin S and melittin. The peptide molecules were predominantly accumulated in the outer half of the bilayer, deforming the erythrocyte cell into crenature. A large accumulation made the membrane structure unstable, resulting in the release of membrane fragments and the simultaneous enhancement of permeability. The action mechanism of these peptides was compared with that of simple surfactants.  相似文献   

9.
The free energy of transfer (DeltaG degrees ) from water to lipid bilayers was measured for two amphipathic peptides, the presequence of the mitochondrial peptide rhodanese (MPR) and melittin. Experiments were designed to determine the effects on peptide partitioning of the addition of lipids that produce structural modifications to the bilayer/water interface. In particular, the addition of cholesterol or the cholesterol analog 6-ketocholestanol increases the bilayer area compressibility modulus, indicating that these molecules modify lipid-lipid interactions in the plane of the bilayer. The addition of 6-ketocholestanol or lipids with attached polyethylene glycol chains (PEG-lipids) modify the effective thickness of the interfacial region; 6-ketocholestanol increases the width of hydrophilic headgroup region in the direction of the acyl chains whereas the protruding PEG chains of PEG-lipids increase the structural width of the headgroup region into the surrounding aqueous phase. The incorporation of PEG-lipids with PEG molecular weights of 2000 or 5000 had no appreciable effect on peptide partitioning that could not be accounted for by the presence of surface charge. However, for both MPR and melittin DeltaG degrees decreased linearly with increasing bilayer compressibility modulus, demonstrating the importance of bilayer mechanical properties in the binding of amphipathic peptides.  相似文献   

10.
The interaction of melittin and a truncated analogue of melittin with an immobilised phosphatidylcholine monolayer has been studied using dynamic elution techniques. The melittin analogue (21Q analogue) had five amino acids omitted from the C-terminal region of melittin. The influence of temperature and methanol concentration on the binding affinity of the two peptides was determined and compared to the binding behaviour of two control molecules N-acetyltryptophanamide and diphenylalanine. Both peptides exhibited non-linear dependence of affinity on % methanol at different temperatures, while N-acetyltryptophanamide and diphenylalanine exhibited linear behaviour. In addition, both melittin and the 21Q analogue exhibited significant band broadening under a range of experimental conditions, which was not evident for N-acetyltryptophanamide and diphenylalanine. As melittin is known to adopt a significant degree of -helical conformation in the presence of lipids, the results suggest that melittin and the 21Q analogue adopt different conformations and orientations upon binding to the immobilised phosphatidylcholine surface. Overall, the results of this study demonstrate that the immobilised lipid monolayer provides a powerful system to rapidly assess the affinity of peptides for different lipid surfaces.  相似文献   

11.
A set of combinatorial amphipathic helical peptides referred to as the KIA series has been screened to identify native-like helical bundles. The series contains the following consensus sequence: AKAxAAxxKAxAAxxKAGGY, where "x" positions are occupied by either Ala or Ile. The peptide sequences in the series comprise all possible combinations of four Ile residues occupying the six x positions. In each case, Ala occupied the two x positions not occupied by Ile. There are a total of 15 peptides in the KIA series; all of the peptides differ in the number of ridges and grooves formed by the Ile side chains, and two of the KIA peptides possess a canonical knobs-into-holes heptad repeat. The structure and stability of these 15 peptides and their pairwise mixtures were evaluated. One peptide in the series formed a stable four-helix bundle that folded with cooperativity similar to native proteins. Ten peptides assembled into molten globular helical assemblies, two peptides were unstructured, and two peptides assembled into helical filaments that were several micrometers long. One of the helical filament forming peptides could be diverted from forming filaments by the addition of another KIA peptide, and resulted in the formation of a heteromeric six-helix bundle. This study demonstrates that combinatorial peptides composed of only three types of amino acids can form a diverse array of structures, some of which are native-like.  相似文献   

12.
Antimicrobial peptides (AMPs) have received considerable interest as a source of new antibiotics with the potential for treatment of multiple-drug resistant infections. An important class of AMPs is composed of linear, cationic peptides that form amphipathic alpha-helices. Among the most potent of these are the cecropins and synthetic peptides that are hybrids of cecropin and the bee venom peptide, mellitin. Both cecropins and cecropin-mellitin hybrids exist in solution as unstructured monomers, folding into predominantly alpha-helical structures upon membrane binding with their long helical axis parallel to the bilayer surface. Studies using model membranes have shown that these peptides intercalate into the lipid bilayer just below the level of the phospholipid glycerol backbone in a location that requires expansion of the outer leaflet of the bilayer, and evidence from a variety of experimental approaches indicates that expansion and thinning of the bilayer are common characteristics during the early stages of antimicrobial peptide-membrane interactions. Subsequent disruption of the membrane permeability barrier may occur by a variety of mechanisms, leading ultimately to loss of cytoplasmic membrane integrity and cell death.  相似文献   

13.
Summary The interaction of melittin and a truncated analogue of melittin with an immobilised phosphatidylcholine monolayer has been studied using dynamic elution techniques. The melittin analogue (21Q analogue) had five amino acids omitted from the C-terminal region of melittin. The influence of temperature and methanol concentration on the binding affinity of the two peptides was determined and compared to the binding behaviour of two control moleculesN-acetyltryptophanamide and diphenylalanine. Both peptides exhibited non-linear dependence of affinity on % methanol at different temperatures, whileN-acetyltryptophanamide and diphenylalanine exhibited linear behaviour. In addition, both melittin and the 21Q analogue exhibited significant band broadening under a range of experimental conditions, which was not evident forN-acetyltryptophanamide and diphenylalanine. As melittin is known to adopt a significant degree of α-helical conformation in the presence of lipids, the results suggest that melittin and the 21Q analogue adopt different conformations and orientations upon binding to the immobilised phosphatidylcholine surface. Overall, the results of this study demonstrate that the immobilised lipid monolayer provides a powerful system to rapidly assess the affinity of peptides for different lipid surfaces.  相似文献   

14.
pH-dependent bilayer destabilization by an amphipathic peptide   总被引:7,自引:0,他引:7  
A 30-residue amphipathic peptide was designed to interact with uncharged bilayers in a pH-dependent fashion. This was achieved by a pH-induced random coil-alpha-helical transition, exposing a hydrophobic face in the peptide. The repeat unit of the peptide, glutamic acid-alanine-leucine-alanine (GALA), positioned glutamic acid residues on the same face of the helix, and at pH 7.5, charge repulsion between aligned Glu destabilized the helix. A tryptophan was included at the N-terminal as a fluorescence probe. The rate and extent of peptide-induced leakage of contents from large, unilamellar vesicles composed of egg phosphatidylcholine were dependent on pH. At pH 5.0 with a lipid/peptide mole ratio of 500/1, 100% leakage of vesicle contents occurred within 1 min. However, no leakage of vesicle contents occurred at pH 7.5. Circular dichroism measurements indicated that the molar ellipticity at 222 nm changed from about -4000 deg cm2 dmol-1 at pH 7.6 to -11,500 deg cm2 dmol-1 at pH 5.1, indicating a substantial increase in helical content as the pH was reduced. Changes in molar ellipticity were most significant over the same pH range where a maximum change in the extent and rate of leakage occurred. The tryptophan fluorescence emission spectra and the circular dichroism spectra of the peptide, in the presence of lipid, suggest that GALA did not associate with the bilayer at neutral pH. A change in the circular dichroism spectrum and a blue shift of the maximum of the tryptophan fluorescence emission spectra at pH 5.0, in the presence of lipid, indicated an association of GALA with the bilayer.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
To achieve the targeted delivery of siRNA, five conjugates of Aib-containing amphipathic helical peptides with mono-, di-, and trivalent cRGDfC [cyclo(-Arg-Gly-Asp-d-Phe-Cys-)], which is known to bind to αVβ3 integrin, at several positions of the amphipathic helical peptide were designed and synthesized. Among the five conjugates, the monovalent cRGDfC conjugating at position 20 of the amino acid sequence of the helical peptide through the formation of a disulfide bond (PI) and the divalent cRGDfC conjugating at positions 2 and 14 of the amino acid sequence of the helical peptide through the formation of disulfide bonds (PIII) significantly enhanced the delivery of fluorescence-labeled siRNA into A549 cells as the peptide/siRNA complex formed by electrostatic interaction. The cellular uptake of the PI/siRNA complex was mediated by both endocytic and non-endocytic pathways, whereas that of the PIII/siRNA complex was enabled by endocytosis. Furthermore, the cellular uptake of the PI/siRNA complex might involve specific interactions of the RGD group with the αVβ3 integrin receptor. Next, the RNAi effect of the peptide/siRNA complex on luciferase expression in A549-Luc cells was examined. Luciferase expression was significantly decreased in the presence of the complex at the concentration of 1.0 μM PI/10 nM siRNA. In contrast, the PIII/siRNA complex did not show the RNAi effect under the same conditions. However, extending the incubation time led to the suppression of the luciferase expression in the presence of the PIII/siRNA complex. Considering that the cellular uptake of the PIII/siRNA complex is mediated by the endocytic pathway, the release of siRNA from the endosome into the cytosol might require a long time. We present herein a useful and unique tool for the delivery of siRNA.  相似文献   

16.
The amphipathic α-helix is a recognised structural motif that is shared by membrane-associating proteins and peptides of diverse function. The aim of this paper is to determine the orientation of an α-helical amphipathic peptide on the bilayer surface. We use five amphipathic 18-residue peptide analogues of a class A amphipathic peptide that is known to associate with a bilayer surface. Tyrosine and tryptophan are used as spectroscopic probes to sense local environments in the peptide in solution and when bound to the surface of unilamellar phosphatidylcholine vesicles. In a series of peptides, tryptophan is moved progressively along the sequence from the nonpolar face (positions 3, 7, 4) to the polar face of the peptide (positions 2, 12). The local environment of the tryptophan residue at each position is determined using fluorescence spectroscopy employing quantum yield, and the wavelength of the emission maximum as indicators of micropolarity. The exposure of the tryptophan residues at each site is assessed by acrylamide quenching. On association with vesicles, the tryptophan residues at positions 3, 7 and 14 are in nonpolar water-shielded environments, and the tryptophan at position 12 is in an exposed polar environment. The tryptophan at position 2, which is located near the bilayer-water interface, exhibits intermediate behaviour. Analysis of the second-derivative absorption spectrum confirmed that the tyrosine residue at position 7 is in a nonpolar water-shielded environment in the peptide-lipid complex. We conclude that these class A amphipathic peptides lie parallel to the lipid surface and penetrate no deeper than the ester linkages of the phospholipids. Received: 8 April 1998 / Revised version: 6 July 1998 / Accepted: 7 August 1998  相似文献   

17.
We have studied the fusion of small unilamellar vesicles composed of egg PC and of a mixture of egg PC plus egg PA using various basic amphipathic peptides. Fusion was monitored by carboxyfluorescein leakage assay, light scattering, membrane intermixing assay, contents mixing assay and electron microscopy. Ac-(L-Leu-L-Ala-L-Arg-L-Leu)3-NHCH3 (peptide 4(3] and Ac-(L-Leu-L-Ala-L-Lys-L-Leu)3-NHCH3 (peptide 4'3), which have high hydrophobic moments, caused transformation of small unilamellar vesicles into larger and relatively homogeneous ones. Ac-(L-Leu-L-Leu-L-Ala-L-Arg-L-Leu)2-NHCH3 (5(2], which has medium hydrophobic moment, induced weak but appreciable fusion, while Ac-(L-Ala-L-Arg-L-Leu)3-NHCH3 (3(3] which has no helical structure did not show any fusion. However, peptides 4(3), 4'3 and 5(2) caused massive leakage of the contents from small unilamellar vesicles. These results indicated that interaction of the peptides with artificial membranes caused extensive perturbation of the lipid bilayer, followed by fusion. The fusogenic capacity of model basic peptides was correlated with the hydrophobic moment of each peptide when the peptides adopted an alpha-helical structure in the presence of acidic liposomes. Peptides 4(3) and 4'3 also showed weak fusogenic ability for neutral liposomes, while 5(2) and 3(3) showed no ability, suggesting that highly amphipathic peptides, such as 4(3), interact weakly but distinctly with neutral liposomes to fuse them.  相似文献   

18.
19.
ABSTRACT: BACKGROUND: A lack of vaccine and rampant drug resistance demands new anti-malarials. METHODS: In vitro blood stage anti-plasmodial properties of several de novo-designed, chemically synthesized, cationic, amphipathic, helical, antibiotic peptides were examined against Plasmodium falciparum using SYBR Green assay. Mechanistic details of anti-plasmodial action were examined by optical/fluorescence microscopy and FACS analysis. RESULTS: Unlike the monomeric decapeptides {(Ac-GXRKXHKXWA-NH2) (X = F,DeltaF) (Fm, DeltaFm IC50 >100 muM)}, the lysine-branched,dimeric versions showed far greater potency {IC50 (muM) Fd 1.5 , DeltaFd 1.39}. The more helical and proteolytically stable DeltaFd was studied for mechanistic details. DeltaFq, a K-K2 dendrimer of DeltaFm and (DeltaFm)2 a linear dimer of DeltaFm showed IC50 (muM) of 0.25 and 2.4 respectively. The healthy/infected red cell selectivity indices were >35 (DeltaFd), >20 (DeltaFm)2 and 10 (DeltaFq). FITC-DeltaFd showed rapid and selective accumulation in parasitized red cells. Overlaying DAPI and FITC florescence suggested that DeltaFd binds DNA. Trophozoites and schizonts incubated with DeltaFd (2.5 muM) egressed anomalously and Band-3 immunostaining revealed them not to be associated with RBC membrane. Prematurely egressed merozoites from peptide-treated cultures were found to be invasion incompetent. CONCLUSION: Good selectivity (>35), good resistance index (1.1) and low cytotoxicity indicate the promise of DeltaFd against malaria.  相似文献   

20.
The complete amino-acid sequence of viral fusion proteins has been analyzed by the Eisenberg procedure. The region surrounding the cleavage site contains a highly hydrophilic region immediately followed by a membrane-like region. Since the effective cleavage between these two domains seems required to expose the fusogenic domain (located at the N-terminal sequence of the transmembrane like region) which is assumed to interact with the lipid membrane of the host cell, we have focused our analysis on the conformation and mode of insertion of this membrane-like domain in a lipid monolayer. It was inserted as an alpha-helical structure into a dipalmitoylphosphatidylcholine (DPPC) monolayer and its orientation at the lipid/water interface was determined using a theoretical analysis procedure allowing the assembly of membrane components. For each viral protein sequence these N-terminal helical segments oriented obliquely with respect to the lipid/water interface. This rather unusual orientation is envisaged as a prerequisite to membrane destabilization and fusogenic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号