首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Objective: To investigate whether there is a difference in sensitivity to a serotonin agonist, meta‐chlorophenylpiperazine (mCPP), or cholecystokinin (CCK‐8), an intestinal hormone that inhibits food intake, between the Osborne‐Mendel (OM) rat, which becomes obese eating a high‐fat diet, and the S5B/Pl (S5B) rat, which is resistant to dietary‐induced obesity. Research Methods and Procedures: OM and S5B rats were adapted to either a high‐saturated‐fat diet (56% energy as fat) or a low‐fat diet (10% energy as fat) or to both for 14 days and then treated with several doses of mCPP or CCK‐8. Results: Treatment with mCPP reduced food intake in both strains of rats. The dose‐response curve showed that the OM rats had an increased sensitivity to the serotonergic agonist. Animals eating the high‐fat diet had less response to mCPP; and in the S5B rats, the response was significantly reduced. After treatment with CCK‐8, there was a similar dose‐related suppression of food intake in both the OM and S5B rats. Discussion: These data are consistent with the hypothesis that the serotonin system in the S5B rat has a greater activity that could act to inhibit fat intake. The response to CCK was not significantly affected by strain or diet.  相似文献   

2.
Objective: This study was designed to investigate whether dietary fat and genetic background might differentially alter the expression of hypothalamic genes involved in food intake. Research Methods and Procedures: Three-month-old Osborne-Mendel (OM) and S5B/Pl rats were fed either a high-fat or a low-fat diet for 14 days. mRNA for neuropeptide Y (NPY), corticotrophin-releasing hormone, NPY Y-1 receptor and Y-5 receptor, and serotonin 2c (5-HT2c) receptors were measured using Northern blotting or ribonuclease protection assays. Results: OM rats showed an increased expression of NPY and corticotrophin-releasing hormone compared with S5B/Pl rats. The expression of NPY-Y1 and -Y5 receptor mRNA was significantly higher in the hypothalamus of OM rats compared with S5B/Pl rats. The expression of 5HT-2c receptor mRNA was significantly reduced in both strains of rats eating a high-fat diet when compared with the animals eating the low-fat diet. Discussion: These data suggest that over activity of the NPY system may contribute to the development of obesity in OM rats and that expression of the 5HT-2c receptor gene may be modulated by dietary fat.  相似文献   

3.
We tested two hypotheses about monoamine neurotransmitters in two strains of rats that differ in their sensitivity to obesity when eating a high-fat diet; 1) that the concentrations of norepinephrine and serotonin and of their metabolites differ in the extracellular fluid of tlie ventromedial hypothalamus of conscious, unrestrained Osborne-Mendel and S 5B/PI rats, and 2) that these monoamines are altered differently between strains by a high-fat diet. The monoamines were measured by HPLC in dialysate collected by in vivo microdialysis in rats eating a semisyntlietic low-fat diet (10% of kcal as fat) and again after either two or seven days of eating a high-fat diet (56 % of kcal as fat). Norepinephrine, serotonin (5-HT), and 5-hydroxyindole-3-acetic acid (5-HIAA) were lower in Osborne-Mendel rats than in S 5BR1 rats eating the low-fat diet. Norepinephrine and serotonin both increased in Osborne-Mendel rats with the onset of tlie high-fat diet so that Osborne-Mendel and S 5B/PI rats no longer differed in these neurotransmitters. By day 7 of high-fat feeding, the concentrations of 3-methoxy-4-hydroxyplienylglycol (MHPG), 5-HIAA and the 5-HIAA/5-HT ratio rose in both strains. Ambient extracellular monoamines in the medial hypothalamus are lower in Osborne-Mendel rats than in S 5B/PI rats and the response of these catecholamines to dietary fat was greater in Osborne-Mendel rats than in S 5B/PI rats.  相似文献   

4.
Leptin reduces body fat selectively, sparing body protein. Accordingly, during chronic leptin administration, food intake is suppressed, and body weight is reduced until body fat is depleted. Body weight then stabilizes at this fat-depleted nadir, while food intake returns to normal caloric levels, presumably in defense of energy and nutritional homeostasis. This model of leptin treatment offers the opportunity to examine controls of food intake that are independent of leptin's actions, and provides a window for examining the nature of feeding controls in a "fatless" animal. Here we evaluate macronutrient selection during this fat-depleted phase of leptin treatment. Adult, male Sprague-Dawley rats were maintained on standard pelleted rodent chow and given daily lateral ventricular injections of leptin or vehicle solution until body weight reached the nadir point and food intake returned to normal levels. Injections were then continued for 8 days, during which rats self-selected their daily diet from separate sources of carbohydrate, protein, and fat. Macronutrient choice differed profoundly in leptin and control rats. Leptin rats exhibited a dramatic increase in protein intake, whereas controls exhibited a strong carbohydrate preference. Fat intake did not differ between groups at any time during the 8-day test. Despite these dramatic differences in macronutrient selection, total daily caloric intake did not differ between groups except on day 2. Thus controls of food intake related to ongoing metabolic and nutritional requirements may supersede the negative feedback signals related to body fat stores.  相似文献   

5.
White CL  Ishii Y  Mendoza T  Upton N  Stasi LP  Bray GA  York DA 《Peptides》2005,26(11):2331-2338
An orexin-1 receptor antagonist decreases food intake whereas orexin-A selectively induces hyperphagia to a high-fat diet. In the present study, we evaluated the effect of an orexin antagonist in two strains of rats that differ in their sensitivity to becoming obese while eating a high-fat diet. Male Osborne-Mendel (OM) and S5B/Pl (S5B) rats were treated acutely with an orexin-1 receptor antagonist (SB-334867), after adaptation to either a high-fat (56% fat energy) diet or a low-fat (10% fat energy) diet that were equicaloric for protein (24% energy). Ad libitum fed rats were injected intraperitoneally with SB-334867 at doses of 3, 10 or 30 mg/kg, or vehicle at the beginning of the dark cycle, and food intake and body weight were measured. Hypothalamic prepro-orexin and orexin-1 receptor mRNA expression were analyzed in OM and S5B rats fed at a high-fat or low-fat diet for two weeks. SB-334867 significantly decreased food intake in both strains of rats eating the high-fat diet but only in the OM rats eating the low fat diet. The effect was greatest at 12 and 24 h. Body weight was also reduced in OM rats 1d after injection of SB-334867 but not in the S5B rats. Prepro-orexin and orexin-1 receptor expression levels did not differ between strains or diets. These experiments demonstrate that an orexin antagonist (SB-334867) reduces food intake and has a greater effect in a rat strain that is susceptible to dietary-induced obesity, than in a resistant strain.  相似文献   

6.
8-hydroxy-2(di-n-propylamino)tetraline (8-OH-DPAT) and 5-methoxy-3(1,2,3,6-tetrahydro-4-pyridinyl)1H indole succinate (RU 24969), two agonists on the putative serotonin 1A and serotonin 1B receptors, were used for exploring the role of these sites in the inhibitory effect of serotonin (5-HT) on feeding. In free-feeding rats, 2.5-5 mg/kg RU 24969 significantly reduced food intake while doses of 8-OH-DPAT ranging from 0.125 to 0.5 mg/kg increased eating. The effects of the highest doses were associated with hyperlocomotion and hyperreactivity for RU 24969 and a typical motor syndrome (flat body posture and forepaw treading) for 8-OH-DPAT. The motor syndrome caused by 0.5 mg/kg 8-OH-DPAT was much more obvious in food-deprived rats in which food intake was also markedly reduced. RU 24969 1.25 and 5 mg/kg reduced food intake by food-deprived rats and caused hyperlocomotion not different from that in free-feeding animals. Pretreatment with metergoline (2 mg/kg i.p.) prevented the effect of 5 mg/kg RU 24969 on food intake by food-deprived rats but had no effect on the reduction of eating caused by 0.5 mg/kg 8-OH-DPAT. The motor syndrome caused by 8-OH-DPAT was not changed by metergoline but the hyperlocomotion caused by RU 24969 was potentiated. Haloperidol (0.1 mg/kg i.p.) completely blocked the hyperlocomotion but did not change the reduction of food intake caused by RU 24969 in food-deprived rats. It is suggested that the putative serotonin 1B receptors specifically mediate the inhibitory effect of 5-HT on feeding whereas serotonin 1A sites act by enhancing eating only in free-feeding animals.  相似文献   

7.
We investigated the effects of dietary whey protein on food intake, body fat, and body weight gain in rats. Adult (11-12 week) male Sprague-Dawley rats were divided into three dietary treatment groups for a 10-week study: control. Whey protein (HP-W), or high-protein content control (HP-S). Albumin was used as the basic protein source for all three diets. HP-W and HP-S diets contained an additional 24% (wt/wt) whey or isoflavone-free soy protein, respectively. Food intake, body weight, body fat, respiratory quotient (RQ), plasma cholecystokinin (CCK), glucagon like peptide-1 (GLP-1), peptide YY (PYY), and leptin were measured during and/or at the end of the study. The results showed that body fat and body weight gain were lower (P < 0.05) at the end of study in rats fed HP-W or HP-S vs. control diet. The cumulative food intake measured over the 10-week study period was lower in the HP-W vs. control and HP-S groups (P < 0.01). Further, HP-W fed rats exhibited lower N(2) free RQ values than did control and HP-S groups (P < 0.01). Plasma concentrations of total GLP-1 were higher in HP-W and HP-S vs. control group (P < 0.05), whereas plasma CCK, PYY, and leptin did not differ among the three groups. In conclusion, although dietary HP-W and HP-S each decrease body fat accumulation and body weight gain, the mechanism(s) involved appear to be different. HP-S fed rats exhibit increased fat oxidation, whereas HP-W fed rats show decreased food intake and increased fat oxidation, which may contribute to the effects of whey protein on body fat.  相似文献   

8.
Three compounds capsaicin, curcumin and ferulic acid showing hypolipidemic activity have been tested in adult Wistar rats fed high fat diets. Capsaicin (0.20 mg%) fed to female rats along with a 30% saturated fat diet lowered the rate of weight gain, liver and serum triglycerides. In male rats it lowered only the liver and serum total and very low density and low density lipoprotein triglycerides whether fed continuously for 13 or 8 weeks after interchanging the control and test diets from the 5th week onwards. Capsaicin fed to female rats in 30% mixed fat diet increased the rate of weight gain, lowered liver and serum triglycerides, lowered adipose tissue lipoprotein lipase, elevated the hormone sensitive lipase and serum free fatty acids. Capsaicin in 30% saturated fat diet lowered both the enzyme activities to a much lesser extent. Curcumin and ferulic acid (both at 25 mg%) in 30% saturated fat diet tended to lower the rate of weight gain, liver total lipids and serum triglycerides. It is of significance that a common dietary compound ‘capsaicin’ in the range of human intake triggers lipid lowering action in rats fed high fat diets. This paper was presented at the 55th Annual Meeting of the Society of Biological Chemists (India) held at Trivandrum during December 15–17th, 1986.  相似文献   

9.
Sucrose polyester, a fat substitute, has shown promise in reducing blood cholesterol and body weight of obese individuals. Effects of this compound in the Zucker rat, a genetic model of obesity, are unknown. Thus, we examined food intake, body weight, body composition, and several metabolic parameters in sera of lean and obese female Zucker rats. Eight-week-old lean and obese animals were given a choice between a control diet (15% corn oil) and fat substitute diet (5% corn oil and 10% sucrose polyester) for 2 days. Next, one-half of the lean and obese groups received control diet; the remaining lean and obese rats received fat substitute diet for 18 days. Cumulative food intake was depressed in fat substitute groups relative to control-fed animals; however, this effect was more predominant in obese animals. Obese rats consuming fat substitute diet (O-FS) gained less weight as compared to obese control-fed animals (O-C). Lean rats given fat substitute (L-FS) did not have significantly different body weights as compared to the L-C group. Fat substitute groups, combined, had lower body fat and higher body water as compared to controls. The O-FS group had lower serum glucose and insulin and higher fatty acid levels compared to the O-C group. There were no differences in serum cholesterol, HDL, or triglyceride levels due to fat substitute diet. These data suggest that the obese Zucker rat is unable to defend its body weight when dietary fat is replaced with sucrose polyester.  相似文献   

10.
Energy intake and expenditure is a highly conserved and well-controlled system with a bias toward energy intake. In times of abundant food supply, individuals tend to overeat and in consequence to increase body weight, sometimes to the point of clinical obesity. Obesity is a disease that is not only characterized by enormous body weight but also by rising morbidity for diabetes type II and cardiovascular complications. To better understand the critical factors contributing to obesity we performed the present study in which the effects of energy expenditure and energy intake were examined with respect to body weight, localization of fat and insulin resistance in normal Wistar rats. It was found that a diet rich in fat and carbohydrates similar to "fast food" (cafeteria diet) has pronounced implication in the development of obesity, leading to significant body weight gain, fat deposition and also insulin resistance. Furthermore, an irregularly presented cafeteria diet (yoyo diet) has similar effects on body weight and fat deposition. However, these rats were not resistant to insulin, but showed an increased insulin secretion in response to glucose. When rats were fed with a specified high fat/carbohydrate diet (10% fat, 56.7% carbohydrate) ad lib or at the beginning of their activity phase they were able to detect the energy content of the food and compensate this by a lower intake. They, however, failed to compensate when food was given in the resting phase and gained more body weight as controls. Exercise, even of short duration, was able to keep rats on lower body weight and reduced fat deposition. Thus, inappropriate food intake with different levels of energy content is able to induce obesity in normal rats with additional metabolic changes that can be also observed in humans.  相似文献   

11.
Changes in dietary macronutrient composition and/or central nervous system neuronal activity can underlie obesity and disturbed fuel homeostasis. We examined whether switching rats from a diet with high carbohydrate content (HC; i.e., regular chow) to diets with either high fat (HF) or high fat/high protein content at the expense of carbohydrates (LC-HF-HP) causes differential effects on body weight and glucose homeostasis that depend on the integrity of brain melanocortin (MC) signaling. In vehicle-treated rats, switching from HC to either HF or LC-HF-HP feeding caused similar reductions in food intake without alterations in body weight. A reduced caloric intake (-16% in HF and LC-HF-HP groups) required to maintain or increase body weight underlay these effects. Chronic third cerebroventricular infusion of the MC receptor antagonist SHU9119 (0.5 nmol/day) produced obesity and hyperphagia with an increased food efficiency again observed during HF (+19%) and LC-HF-HP (+33%) feeding. In this case, however, HF feeding exaggerated SHU9119-induced hyperphagia and weight gain relative to HC and LC-HF-HP feeding. Relative to vehicle-treated controls, SHU9119 treatment increased plasma insulin (2.8-4 fold), leptin (7.7-15 fold), and adiponectin levels (2.4-3.7 fold), but diet effects were only observed on plasma adiponectin (HC and LC-HF-HP相似文献   

12.
Brown adipose tissue (BAT) thermogenesis is an uncoupled ATPase-independent thermogenic mechanism. Ion transport by the Na,K pump is an ATPase- dependent thermogenic mechanism. Both have been proposed as mechanisms of altered energy expenditure during states of dietary energy surfeit and deficit. Our aim was to study these mechanisms during diet-induced obesity and weight loss. Over 36 weeks rats were fed lard- or tallow-based diets (63% energy as fat), or a control diet (12% energy as fat). During periods of restriction rats were fed 50% of the energy intake of controls in the form of a control diet. Several components of thermogenic response increased in rats eating high fat diets and decreased following dietary restriction. BAT activation occurred, particularly with a lard-based diet, as indicated by increased GDP binding and uncoupling protein (UCP) content. Na,K pump activity in thymocytes increased with the feeding of both high fat diets at some time points. Plasma T3 level increased in rats eating the lard-based diet and decreased with dietary restriction regardless of previous diet. Resting metabolic rate (RMR) of the animals was unchanged despite increases in these thermogenic components and was decreased in all groups following dietary restriction. Our results indicate a lack of any major role for activated BAT thermogenesis in mitigating the extent of the obesity induced by the high fat diets. The reasons for the differences in response to the two different sources of saturated fat, lard, and tallow, are not clear.  相似文献   

13.
Abstract. The interactive effects of macronutrient balance [protein (P) : carbohydrate (C) ratio] and dietary dilution by cellulose on nutritional regulation and performance were investigated in the generalist caterpillar Spodoptera littoralis (Boisduval). Caterpillars were reared through the final stadium on one of 20 foods varying factorially in macronutrient content (P + C%: 42, 33.6. 25.2 or 16.8%) and P : C ratio (5 : 1, 2 : 1, 1 : 1, 1 : 2 or 1 : 5). The animals compensate by eating more of diluted foods, but suffer reduced nutrient intake in proportion to the degree of dilution. Increase in food intake with dilution is greater on balanced than imbalanced foods and this is reflected in greater reduction of dry pupal mass with dilution in the latter. Whereas dilution results in a reduction in the amount of whichever macronutrient is in excess in the food, by contrast, the ability to compensate for the deficient macronutrient in the food is unaffected by nutrient imbalance. Excess protein intake due to nutritional imbalance (diets with high P : C ratios) results in a regulatory decrease in the efficiency of retention of ingested nitrogen relative to restricted protein intake on oppositely imbalanced foods (low P : C ratios). By contrast, decreased protein intake due to dietary dilution is associated with a non‐regulatory reduction in the efficiency of retention, irrespective of P : C ratio. Dilution is similarly associated with reduced utilization efficiency of ingested carbohydrate. The ecological implications of these results are discussed.  相似文献   

14.
Soluble fermentable dietary fibre elicits gut adaptations, increases satiety and potentially offers a natural sustainable means of body weight regulation. Here we aimed to quantify physiological responses to graded intakes of a specific dietary fibre (pectin) in an animal model. Four isocaloric semi-purified diets containing 0, 3.3%, 6.7% or 10% w/w apple pectin were offered ad libitum for 8 or 28 days to young adult male rats (n = 8/group). Measurements were made of voluntary food intake, body weight, initial and final body composition by magnetic resonance imaging, final gut regional weights and histology, and final plasma satiety hormone concentrations. In both 8- and 28-day cohorts, dietary pectin inclusion rate was negatively correlated with food intake, body weight gain and the change in body fat mass, with no effect on lean mass gain. In both cohorts, pectin had no effect on stomach weight but pectin inclusion rate was positively correlated with weights and lengths of small intestine and caecum, jejunum villus height and crypt depth, ileum crypt depth, and plasma total glucagon-like peptide-1 (GLP-1) and peptide tyrosine tyrosine (PYY) concentrations, and at 8 days was correlated with weight and length of colon and with caecal mucosal depth. Therefore, the gut’s morphological and endocrine adaptations were dose-dependent, occurred within 8 days and were largely sustained for 28 days during continued dietary intervention. Increasing amounts of the soluble fermentable fibre pectin in the diet proportionately decreased food intake, body weight gain and body fat content, associated with proportionately increased satiety hormones GLP-1 and PYY and intestinal hypertrophy, supporting a role for soluble dietary fibre-induced satiety in healthy body weight regulation.  相似文献   

15.
Primeaux SD  York DA  Bray GA 《Peptides》2006,27(7):1644-1651
The orexigenic effects of neuropeptide Y (NPY) are mediated through the hypothalamus, while the anxiolytic effects of NPY appear to be mediated through the amygdala. We hypothesized that intra-amygdalar administration of NPY might alter food preference without changing total food intake. Neuropeptide Y was administered into the central nucleus of the amygdala in both satiated and overnight-fasted rats, and intake and preference for a high fat diet (56%)/low carbohydrate (20%) diet or a low fat (10%)/high carbohydrate (66%) diet were measured. Intra-amygdalar NPY administration in satiated rats did not change total caloric intake, but it did produce a dose-dependent decrease in intake of and preference for high fat diet relative to low fat diet over 24 h. In overnight-fasted rats, intra-amygdalar NPY also decreased the intake and preference for a high fat diet relative to low fat diet over 24 h, without altering total caloric intake. Intra-amygdalar NPY administration did not produce conditioned taste aversions to a novel saccharin solution. These results suggest that amygdalar NPY may have a role in macronutrient selection, without altering total caloric intake.  相似文献   

16.
Objective: To analyze the putative interest of oligofructose (OFS) in the modulation of food intake after high‐fat diet in rats and to question the relevance of the expression and secretion of intestinal peptides in that context. Research Methods and Procedures: Male Wistar rats were pretreated with standard diet or OFS‐enriched (10%) standard diet for 35 days followed by 15 days of high‐fat diet enriched or not with OFS (10%) treatment. Body weight, food intake, triglycerides, and plasma ghrelin levels were monitored during the treatment. On day 50, rats were food‐deprived 8 hours and anesthetized for blood and intestinal tissue sampling for further proglucagon mRNA, glucagon‐like peptide (GLP)‐1, and GLP‐2 quantification. Results: The addition of OFS in the diet protects against the promotion of energy intake, body weight gain, fat mass development, and serum triglyceride accumulation induced by a high‐fat diet. OFS fermentation leads to an increase in proglucagon mRNA in the cecum and the colon and in GLP‐1 and GLP‐2 contents in the proximal colon, with consequences on the portal concentration of GLP‐1 (increase). A lower ghrelin level is observed only when OFS is added to the standard diet of rats. Discussion: In rats exposed to high‐fat diet, OFS is, thus, able to modulate endogenous production of gut peptides involved in appetite and body weight regulation. Because several approaches are currently used to treat type 2 diabetes and obesity with limited effectiveness, dietary fibers such as OFS, which promote the endogenous production of gut peptides like GLP‐1, could be proposed as interesting nutrients to consider in the management of fat intake and associated metabolic disorders.  相似文献   

17.
The effects of adrenalectomy and dehydroepiandrosterone (DHEA) doses (0, 15, 30, 60, 120 and 240 mg/kg/day ip) on hepatic enzyme activity and lipid content and on the amount of epididymal fat pad lipid were studied in starved-refed BHE and Sprague-Dawley rats. BHE rats had significantly greater relative liver size, glucose-6-phosphate dehydrogenase (G6PD) and malic enzyme (ME) activities, and percentage liver lipid but less epididymal fat pad lipid than Sprague-Dawley rats. Adrenalectomized (ADX) rats consumed significantly less food, gained less weight per day, and had less lipid in their livers and fat pads than intact rats. As the level of DHEA increased from 0 to 240 mg/kg/day there was a significant linear decrease in average daily weight gain, food intake, G6PD activity, and percentage liver lipid. At the 15 mg/kg/day dose, G6PD activity was significantly reduced without reductions in the other parameters measured. At the 120 mg/kg/day dose, however, weight gain, food intake, G6PD activity, and percentage liver lipid were significantly lower than that of the controls. At this dose DHEA treatment reduced food intake by 17% whereas it diminished average daily weight gain and G6PD activity by 30 and 56%, respectively. The 240 mg/kg/day dose of DHEA significantly reduced food intake, weight gain, liver lipid, G6PD activity, and ME activity. Intact and ADX BHE rats reduced their G6PD activity and liver lipid more rapidly than Sprague-Dawley rats as the level of DHEA administered increased. ADX Sprague-Dawley rats receiving DHEA had greater liver lipid content and enzyme activity than their intact counterparts whereas the reverse situation was true in BHE rats. These data indicate that the effect of DHEA on body weight gain, food intake, and hepatic and peripheral adiposity are dependent on the strain of rat, the adrenal status, and the DHEA dose.  相似文献   

18.
Recent clinical research has studied weight responses to varying diet composition, but the contribution of changes in macronutrient intake and physical activity to rising population weight remains controversial. Research on the economics of obesity typically assumes a “calories in, calories out” framework, but a weight production model separating caloric intake into carbohydrates, fat, and protein, has not been explored in an economic framework. To estimate the contributions of changes in macronutrient intake and physical activity to changes in population weight, we conducted dynamic time series and structural VAR analyses of U.S. data between 1974 and 2006 and a panel analysis of 164 countries between 2001 and 2010. Findings from all analyses suggest that increases in carbohydrates are most strongly and positively associated with increases in obesity prevalence even when controlling for changes in total caloric intake and occupation-related physical activity. Our structural VAR results suggest that, on the margin, a 1% increase in carbohydrates intake yields a 1.01 point increase in obesity prevalence over 5 years while an equal percent increase in fat intake decreases obesity prevalence by 0.24 points.  相似文献   

19.
Serotonin reuptake transporter (SERT) is a key regulator of serotonin neurotransmission and a major target of antidepressants. Antidepressants, such as selectively serotonin reuptake inhibitors (SSRIs), that block SERT function are known to affect food intake and body weight. Here, we provide genetic evidence that food intake and metabolism are regulated by separable mechanisms of SERT function. SERT-deficient mice ate less during both normal diet and high fat diet feeding. The reduced food intake was accompanied with markedly elevated plasma leptin levels. Despite reduced food intake, SERT-deficient mice exhibited glucose intolerance and insulin resistance, and progressively developed obesity and hepatic steatosis. Several lines of evidence indicate that the metabolic deficits of SERT-deficient mice are attributable to reduced insulin-sensitivity in peripheral tissues. First, SERT-deficient mice exhibited beta-cell hyperplasia and islet-mass expansion. Second, biochemical analyses revealed constitutively elevated JNK activity and diminished insulin-induced AKT activation in the liver of SERT-deficient mice. SERT-deficient mice exhibited hyper-JNK activity and hyperinsulinemia prior to the development of obesity. Third, enhancing AKT signaling by PTEN deficiency corrected glucose tolerance in SERT-deficient mice. These findings have potential implications for designing selective SERT drugs for weight control and the treatment of metabolic syndromes.  相似文献   

20.
The aim of this study was to investigate the role of dietary macronutrient content on adiposity parameters and adipocyte hypertrophy/hyperplasia in subcutaneous and visceral fat depots from Wistar rats using combined histological and computational approaches. For this purpose, male Wistar rats were distributed into 4 groups and were assigned to different nutritional interventions: Control group (chow diet); high-fat group, HF (60% E from fat); high-fat-sucrose group, HFS (45% E from fat and 17% from sucrose); and high-sucrose group, HS (42% E from sucrose). At day 35, rats were sacrificed, blood was collected, tissues were weighed and fragments of different fat depots were kept for histological analyses with the new softwareAdiposoft. Rats fed with HF, HFS and HS diets increased significantly body weight and total body fat against Control rats, being metabolic impairments more pronounced on HS rats than in the other groups. Cellularity analyses usingAdiposoft revealed that retroperitoneal adipose tissue is histologically different than mesenteric and subcutaneous ones, in relation to bigger adipocytes. The subcutaneous fat pad was the most sensitive to the diet, presenting adipocyte hypertrophy induced by HF diet and adipocyte hyperplasia induced by HS diet. The mesenteric fat pad had a similar but attenuated response in comparison to the subcutaneous adipose tissue, while retroperitoneal fat pad only presented adipocyte hyperplasia induced by the HS diet intake after 35 days of intervention. These findings provide new insights into the role of macronutrients in the development of hyperplastic obesity, which is characterized by the severity of the clinical features. Finally, a new tool for analyzing histological adipose samples is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号