首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Post-translational modifications during lantibiotic biosynthesis   总被引:2,自引:0,他引:2  
Recent reports have provided the first insights into the mechanisms of the extensive post-translational modifications involved in the biosynthesis of the lantibiotics, a class of peptide antimicrobial agents. These modifications involve dehydration of several serine and threonine residues followed by intramolecular conjugate additions of cysteines, resulting in extensively cross-linked polycyclic structures. Both in vivo and in vitro studies indicate low substrate specificity of the modification machinery, which has been explored for re-engineering of the structures of a number of members. In addition to these developments in understanding their biosynthesis, studies on the mode of action of several lantibiotics have shown a unique mechanism of binding to lipid II, an intermediate in cell wall biosynthesis.  相似文献   

2.
Lantibiotics are a unique class of peptide antibiotics. Recent studies of the proteins involved in the elaborate post-translational modifications of lantibiotics have revealed that these enzymes have relaxed substrate specificity. These modifications include the dehydration of serine and threonine residues followed by the intramolecular addition of cysteine thiols to the unsaturated amino acids to create an intricate polycyclic peptide. The use of peptide engineering in vivo and in vitro has allowed investigation of their biosynthetic machinery. Several members utilize a unique mode of biological action that involves the sequestration of lipid II, a crucial intermediate in peptidoglycan biosynthesis, to form pores in bacterial membranes.  相似文献   

3.
Analysis of genes involved in biosynthesis of the lantibiotic subtilin.   总被引:11,自引:0,他引:11  
Lantibiotics are peptide-derived antibiotics with high antimicrobial activity against pathogenic gram-positive bacteria. They are ribosomally synthesized and posttranslationally modified (N. Schnell, K.-D. Entian, U. Schneider, F. G?tz, H. Z?hner, R. Kellner, and G. Jung, Nature [London] 333:276-278, 1988). The most important lantibiotics are subtilin and the food preservative nisin, which both have a very similar structure. By using a hybridization probe specific for the structural gene of subtilin, spaS, the DNA region adjacent to spaS was isolated from Bacillus subtilis. Sequence analysis of a 4.9-kb fragment revealed several open reading frames with the same orientation as spaS. Downstream of spaS, no reading frames were present on the isolated XbaI fragment. Upstream of spaS, three reading frames, spaB, spaC, and spaT, were identified which showed strong homology to genes identified near the structural gene of the lantibiotic epidermin. The SpaT protein derived from the spaT sequence was homologous to hemolysin B of Escherichia coli, which indicated its possible function in subtilin transport. Gene deletions within spaB and spaC revealed subtilin-negative mutants, whereas spaT gene disruption mutants still produced subtilin. Remarkably, the spaT mutant colonies revealed a clumpy surface morphology on solid media. After growth on liquid media, spaT mutant cells agglutinated in the mid-logarithmic growth phase, forming longitudinal 3- to 10-fold-enlarged cells which aggregated. Aggregate formation preceded subtilin production and cells lost their viability, possibly as a result of intracellular subtilin accumulation. Our results clearly proved that reading frames spaB and spaC are essential for subtilin biosynthesis whereas spaT mutants are probably deficient in subtilin transport.  相似文献   

4.
Analysis of genes involved in the biosynthesis of lantibiotic epidermin.   总被引:17,自引:0,他引:17  
The structural gene of the lanthionine-containing peptide antibiotic epidermin is located on a 54-kb plasmid of Staphylococcus epidermidis [Schnell et al. (1988) Nature 333, 276-278]. A 13.5-kb DNA region neighbouring the epidermin structural gene (epiA) was subcloned and its sequencing revealed five additional open reading frames. Three of these reading frames, epiB, epiC and epiD shared no homology with previously described proteins stored in data bases. They were located 3' adjacent to epiA. Using epiB as a probe, a 5-kb mRNA was identified indicating that three or all four reading frames are transcribed as an operon. Additionally, a 0.3-kb mRNA specific for epiA was identified. Two open reading frames (epiP and epiQ) were located 3' to epiA, epiB, epiC and epiD, but in the reverse orientation. The epiQ gene product shows similarity to the positive regulatory factor PhoB. This might indicate a regulatory function of epiQ in epidermin biosynthesis. The epiP gene product shows striking similarity to several serine proteases which makes epiP a likely candidate for processing the epidermin prepeptide. Heterologous epidermin synthesis in the non-producing organism Staphylococcus carnosus finally proved that these reading frames are necessary for epidermin biosynthesis.  相似文献   

5.
Lantibiotics are peptide-derived antibiotics with high antimicrobial activity against pathogenic gram-positive bacteria. They are ribosomally synthesized and posttranslationally modified (N. Schnell, K.-D. Entian, U. Schneider, F. Götz, H. Zähner, R. Kellner, and G. Jung, Nature [London] 333:276-278, 1988). The most important lantibiotics are subtilin and the food preservative nisin, which both have a very similar structure. By using a hybridization probe specific for the structural gene of subtilin, spaS, the DNA region adjacent to spaS was isolated from Bacillus subtilis. Sequence analysis of a 4.9-kb fragment revealed several open reading frames with the same orientation as spaS. Downstream of spaS, no reading frames were present on the isolated XbaI fragment. Upstream of spaS, three reading frames, spaB, spaC, and spaT, were identified which showed strong homology to genes identified near the structural gene of the lantibiotic epidermin. The SpaT protein derived from the spaT sequence was homologous to hemolysin B of Escherichia coli, which indicated its possible function in subtilin transport. Gene deletions within spaB and spaC revealed subtilin-negative mutants, whereas spaT gene disruption mutants still produced subtilin. Remarkably, the spaT mutant colonies revealed a clumpy surface morphology on solid media. After growth on liquid media, spaT mutant cells agglutinated in the mid-logarithmic growth phase, forming longitudinal 3- to 10-fold-enlarged cells which aggregated. Aggregate formation preceded subtilin production and cells lost their viability, possibly as a result of intracellular subtilin accumulation. Our results clearly proved that reading frames spaB and spaC are essential for subtilin biosynthesis whereas spaT mutants are probably deficient in subtilin transport.  相似文献   

6.
In lantibiotic lacticin 481 biosynthesis, LctT cleaves the precursor peptide and exports mature lantibiotic. Matrix-assisted laser desorption ionization-time of flight mass spectrometry revealed that a truncated form of lacticin 481 is produced in the absence of LctT or after cleavage site inactivation. Production of truncated lacticin 481 is 4-fold less efficient, and its specific activity is about 10-fold lower.  相似文献   

7.
8.
Molecular mechanisms and genetics of hyaluronan biosynthesis   总被引:6,自引:0,他引:6  
Hyaluronan is an extremely important polysaccharide from both the biological and commercial points of view. This review summarizes the present state of the art concerning the polymer and our understanding of the molecular mechanisms of its synthesis with emphasis on the implications of this understanding for polysaccharide engineering of hyaluronan.  相似文献   

9.
10.
The solution structure of the lantibiotic gallidermin   总被引:3,自引:0,他引:3  
The 21-peptide amide antibiotic gallidermin is a potential therapeutic against acne disease. It belongs to the class of polycyclic lanthionine and alpha,beta-didehydroamino acids containing polypeptides, which were named "lantibiotics." The structural gene of the recently elucidated lantibiotic gallidermin encodes a precursor peptide containing Ser, Thr, and Cys residues in the C-terminal prolantibiotic part, and an unusually hydrophilic leader peptide. The ribosomally synthesized pregallidermin is posttranslationally modified and processed to a complex peptide antibiotic with four sulfide rings and two unsaturated residues. The complete solution structure of gallidermin was determined in trifluoroethanol: water (95:5) and dimethylsulfoxide by two-dimensional 1H-nmr at 500 MHz, using a combination of double quantum filtered correlated spectroscopy, homonuclear Hartman-Hahn, and nuclear Overhauser enhancement spectroscopy experiments. Using a total number of 152 distance constraints from NOEs and 14 torsional constraints, derived from coupling constants, we obtained a screwlike solution structure of gallidermin. Restrained molecular dynamics simulations yielded a set of five converging structures with an atomic rms difference of 1.7 A for the backbone atoms, not dependent on the starting structure. The spatial structure model is in excellent agreement with the amphiphilic and channel-forming properties of gallidermin on membranes and its tryptic cleavage at the exposed site between residues 13 and 14.  相似文献   

11.
Abstract Single-gene mutants of Escherichia coli defective in aerobactin biosynthesis were incubated under non-growing conditions for 2 h with radiolabelled lysine. Analysis of the intermediates produced suggested that acetylation of lysine may be the first step in aerobactin production.  相似文献   

12.
13.
The lantibiotic (lanthionine-containing antibiotic) mersacidin is an antimicrobial peptide consisting of 20 amino acids and is produced by Bacillus sp. strain HIL Y-85,54728. The structural gene (mrsA) and the genes for producer self-protection, modification enzymes, transport proteins, and regulator proteins are organized in a 12.3-kb biosynthetic gene cluster on the chromosome of the producer strain. Mersacidin is produced in stationary phase in a synthetic medium (K. Altena, A. Guder, C. Cramer, and G. Bierbaum, Appl. Environ. Microbiol. 66:2565-2571, 2000). To investigate the influence of the alternative sigma factor H on mersacidin biosynthesis, a SigH knockout was constructed. The knockout mutant was asporogenous, and a comparison to the wild-type strain indicated no significant differences concerning mersacidin production and immunity. Characterization of the mrsA promoter showed that the gene is transcribed by the housekeeping sigma factor A. The biosynthesis of some lantibiotic peptides like nisin or subtilin is regulated in a cell-density-dependent manner (M. Kleerebezem, Peptides 25:1405-1414, 2004). When mersacidin was added at a concentration of 2 mg/liter to an exponentially growing culture, an earlier production of antibacterial activity against Micrococcus luteus ATCC 4698 in comparison to that of the control culture was observed, suggesting that mersacidin itself functions as an autoinducer. In real-time PCR experiments, the expression of mrsA was remarkably increased in the induced culture compared to the control. In conclusion, mersacidin is yet another lantibiotic peptide whose biosynthesis can be regulated by an autoinducing mechanism.  相似文献   

14.
15.
We have studied the enzymes and genes involved in the biosynthesis of putrescine, spermidine, and spermine in Saccharomyces cerevisiae. Mutants have been isolated with defects in the biosynthetic pathway as follows: spe10 mutants, deficient in ornithine decarboxylase, cannot make putrescine, spermidine, or spermine; spe2 mutants, lacking S-adenosylmethionine decarboxylase, cannot make spermidine or spermine; spe3 mutants, lacking putrescine aminopropyltransferase, cannot make spermidine or spermine; and spe4 and spe40 mutants, lacking spermidine aminopropyltransferase, contain no spermine and permit growth of spe10 mutants. Studies with these mutants have shown that in yeast: 1) polyamines are absolutely required for growth; 2) putrescine is formed only by decarboxylation or ornithine; 3) two separate aminopropyltransferases are required for spermidine and spermine synthesis; 4) spermine and spermidine are important in the regulation of ornithine decarboxylase and the amines exert this control by a posttranslational modification of the enzyme; and 5) spermidine or spermine is essential for sporulation of yeast and for the maintenance of the double-stranded RNA killer plasmid. Recent studies in amine-deficient mutants of Escherichia coli have shown an important role of the polyamines in protein synthesis in vivo.  相似文献   

16.
Nisin is a posttranslationally modified antimicrobial peptide containing the cyclic thioether amino acids lanthionine and methyllanthionine. Although much is known about its antimicrobial activity and mode of action, knowledge about the nisin modification process is still rather limited. The dehydratase NisB is believed to be the initial interaction partner in modification. NisB dehydrates specific serine and threonine residues in prenisin, whereas the cyclase NisC catalyzes the (methyl)lanthionine formation. The fully modified prenisin is exported and the leader peptide is cleaved off by the extracellular protease NisP. Light scattering analysis demonstrated that purified NisB is a dimer in solution. Using size exclusion chromatography and surface plasmon resonance, the interaction of NisB and prenisin, including several of its modified derivatives, was studied. Unmodified prenisin binds to NisB with an affinity of 1.05 ± 0.25 μm, whereas the dehydrated and the fully modified derivatives bind with respective affinities of 0.31 ± 0.07 and 10.5 ± 1.7 μm. The much lower affinity for the fully modified prenisin was related to a >20-fold higher off-rate. For all three peptides the stoichiometry of binding was 1:1. Active nisin, which is the equivalent of fully modified prenisin lacking the leader peptide did not bind to NisB, nor did prenisin in which the highly conserved FNLD box within the leader peptide was mutated to AAAA. Taken together our data indicate that the leader peptide is essential for initial recognition and binding of prenisin to NisB.  相似文献   

17.
18.
The plasmid-encoded epidermin biosynthesis gene, epiD, of Staphylococcus epidermidis Tü3298 was expressed in Escherichia coli by using both the malE fusion system and the T7 RNA polymerase-promoter system. EpiD was identified by Western blotting (immunoblotting) with anti-maltose-binding protein (MBP)-EpiD antiserum. EpiD and the MBP-EpiD fusion protein, which were mainly present in the soluble protein fraction, were purified from the respective E. coli clones. Purified EpiD showed the typical absorption spectrum of an oxidized flavoprotein with maxima at 274, 382, and 453 nm. The coenzyme released from EpiD by heat treatment was identified as flavin mononucleotide. S. epidermidis Tü3298/EMS11, containing a mutation within epiD, was unable to synthesize active epidermin. This mutated gene, epiD*, was cloned in E. coli and expressed as an MBP-EpiD* fusion protein. DNA sequencing of epiD* identified a point mutation that led to replacement of Gly-93 with Asp. Unlike MBP-EpiD, the fusion protein MBP-EpiD* could not bind flavin mononucleotide. We propose that EpiD catalyzes the removal of two reducing equivalents from the cysteine residue of the C-terminal meso-lanthionine to form a --C==C-- double bond and is therefore involved in formation of the unusual S-[(Z)-2-aminovinyl[-D-cysteine structure in epidermin.  相似文献   

19.
This study demonstrated, for the first time, that immunity genes licFGEHI are not essential for self-protection and production of the two-component lantibiotic lichenicidin in the Gram-negative heterologous host Escherichia coli BLic5. Additionally, it was experimentally demonstrated that lichenicidin lantibiotics are active against the E. coli imp4213 strain, a mutant strain possessing a permeable outer membrane.  相似文献   

20.
Tuberculosis and other mycobacterial infections are the most serious infectious diseases in terms of human fatalities. The high content of unique cell-wall lipids helps these organisms to resist antimicrobial drugs and host defences. The biosynthesis of these lipids is discussed briefly. The recent advances in recombinant DNA technology have begun to help to elucidate the nature of some of the enzymes involved in this process and the genes that encode them. Gene disruption and other molecular genetic technologies are beginning to provide new approaches to test for the biological functions of these gene products and may lead to identification of new antimycobacterial drug targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号