首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human skeletal muscle precursor cells (myoblasts) have significant therapeutic potential and are a valuable research tool to study muscle cell biology. Oxygen is a critical factor in the successful culture of myoblasts with low (1–6%) oxygen culture conditions enhancing the proliferation, differentiation, and/or viability of mouse, rat, and bovine myoblasts. The specific effects of low oxygen depend on the myoblast source and oxygen concentration; however, variable oxygen conditions have not been tested in the culture of human myoblasts. In this study, muscle precursor cells were isolated from vastus lateralis muscle biopsies and myoblast cultures were established in 5% oxygen, before being divided into physiological (5%) or standard (20%) oxygen conditions for experimental analysis. Five percent oxygen increased proliferating myoblast numbers, and since low oxygen had no significant effect on myoblast viability, this increase in cell number was attributed to enhanced proliferation. The proportion of cells in the S (DNA synthesis) phase of the cell cycle was increased by 50%, and p21Cip1 gene and protein expression was decreased in 5 versus 20% oxygen. Unlike in rodent and bovine myoblasts, the increase in myoD, myogenin, creatine kinase, and myosin heavy chain IIa gene expression during differentiation was similar in 5 and 20% oxygen; as was myotube hypertrophy. These data indicate for the first time that low oxygen culture conditions stimulate proliferation, whilst maintaining (but not enhancing) the viability and the differentiation potential of human primary myoblasts and should be considered as optimum conditions for ex-vivo expansion of these cells.  相似文献   

2.
Abstract

Antisense oligonucleotides bind to specific mRNA or pre-mRNA sequences through Watson-Crick base pairing, resulting in decreased expression of the targeted protein. The use of cationic lipids to enhance cellular uptake of antisense oligonucleotides is reviewed herein. Cationic lipids such as N[1-(2,3-dioleyloxy)propyl]-N, N, N-trimethylammonium chloride (DOTMA) were found to enhance the biological activity of phosphorothioate oligonucleotides by at least 1000-fold in cell culture. Cationic lipid preparations enhanced both the rate and amount of oligonucleotide which associated with cells. In addition, DOTMA markedly changed the subcellular distribution of the oligonucleotide. In the absence of lipid, fluorescein labelled phosphorothioate oligonucleotides accumulated in discrete cytoplasmic structures. In the presence of cationic lipids, the oligonucleotides concentrated within the nucleus, were excluded from nucleoli, and localized in punctate cytoplasmic structures. The accumulation of the oligonucleotide in the nucleus was inhibited by incubation of the cells at 4°C and by monensin, but not by chloroquine, ammonium chloride, or nocodazole. Cell lines, both primary and transformed, differ markedly in their sensitivity to inhibition of gene expression with antisense oligonucleotides in the presence of cationic lipids. The differential sensitivity of the cells correlates with the amount of 35S-labelled oligonucleotide associated with the cells and the number of cells in the population which take up the oligonucleotide. Our studies have demonstrated that several types of cationic lipids markedly enhance the activity of phosphorothioate oligonucleotides in cell culture models. We are currently investigating the ability of cationic lipids to enhance activity of antisense oligonucleotides in more complex systems such as organ cultures and in animals.  相似文献   

3.
Abstract

6′-substituted carbocyclic deoxyribonucleosides and 2′-O-ethylene glycol substituted ribonucleosides have been evaluated as building blocks for antisense oligonucleotides. Within the former class 6′-hydroxy substituted building blocks in combination with internucleoside phosphorothioate linkages have the potential to enhance antisense activity. 2′-O-ethylene glycol substituted ribonucleosides generally allow for the construction of potent antisense oligonucleotides with reduced phosphorothioate content, but differences exist in their effects on biological activity in cell culture in spite of virtually identical effects on RNA-binding affinity. Activity enhancement was most pronounced for a 2′-O-methoxyethyl substituent.  相似文献   

4.
5.
《Life sciences》1994,54(2):101-107
To investigate further the immunological properties of nucleic acids, the mitogenicity of a phosphorothioate oligonucleotide (S-oligo 1082) with anti-sense activity for herpes simplex virus was tested. This compound stimulated proliferation and antibody production by murine lymphocytes in in vitro cultures. Proliferation was dose-dependent and unaffected by T cell depletion. Furthermore, inclusion of a non-mitogenic DNA in the medium did not block stimulation. Since 1082 does not have homology to a known gene involved in lymphocyte activation, these observations suggest that S-oligo antisense compounds may display non-specific activating effects, at least on murine B cells.  相似文献   

6.
RIP2 is an important regulator of myoblast proliferation and differentiation. We have previously demonstrated that in the myoblast cell line C2C12 and in primary myoblasts, downregulation of rip2 gene expression is a prerequisite for differentiation. To further study the role of rip genes in myogenesis, we compared expression patterns of rip1–4 in two myoblast cell lines, C2C12 and C2F3, after the induction of differentiation. These two cell lines are derived from the same clonal origin, but differ with respect to their differentiation behaviour: specifically, the differentiation process is slower and more incomplete in C2F3 cells. When analyzing cells up to 4 days after the induction of differentiation, we found no downregulation of rip2 gene expression in C2F3 cells, which might be linked to the low differentiation potential of these cells. In addition, in contrast to C2C12 cells, the rip3 gene was not expressed in C2F3 cells. To further study the role of rip genes in the regulation of myoblast growth and differentiation, we analyzed expression patterns of rip14 in rhabdomyosarcoma cell lines. We found that in these cells, rip2 expression was not downregulated after the induction of differentiation. Furthermore, in contrast to normal myoblasts, they did not express the rip3 and rip4 genes. Thus, we focused on the functional role of RIP2 in rhabdomyosarcoma cells. Inhibition of rip2 gene expression in C2C12 and in rhabdomyosarcoma cells using specific siRNAs led to decreased proliferation and promoted the differentiation process of these cells. These data indicate that differential expression of rip genes can be associated with abnormal growth and differentiation behaviour of skeletal myoblasts.  相似文献   

7.
目的:研究bFGF反义硫代寡核苷酸增强肿瘤细胞对化疗药物敏感性作用。方法:设计、合成bFGF寡核苷酸,用聚乙烯亚胺(polyemyleneimine,PEI)介导bFGF反义硫代寡核苷酸转染入黑色素瘤B16细胞,MTT法检测bFGF反义硫代寡核苷酸及其与化疗药物联合处理后的细胞增殖率;半定量RT-PCR测定bFGF反义硫代寡核苷酸转染后细胞中bFGF mRNA水平;流式细胞仪分析bFGF反义硫代寡核苷酸诱导的细胞凋亡。结果:bFGF反义硫代寡核苷酸对B16细胞增殖的抑制率为64.8%,且呈剂量依赖效应。B16细胞中bFGF mRNA被bFGF反义硫代寡核苷酸显著降低,为对照细胞的57.9%,且bFGF反义硫代寡核苷酸诱导B16细胞凋亡,凋亡率为41.8%。bFGF反义硫代寡核苷酸转染能显著增强B16细胞对阿霉素、5-氟脲嘧啶及顺铂的敏感性,非特异性硫代寡核苷酸不影响阿霉素、5-氟脲嘧啶及顺铂抑制B16细胞增殖。结论:bFGF反义硫代寡核苷酸显著增强B16细胞的化疗敏感性,表明其可协同化疗药物用于治疗肿瘤。  相似文献   

8.
9.
Protein kinase C (PKC) has been implicated in the control of proliferation and differentiation of many cell types. There is evidence indicating that it plays a role in signal transduction mechanisms related to myogenesis, but little is known about the individual functions of PKC isoforms in muscle cell development. Data obtained in previous studies using cultured chick embryo skeletal muscle cells suggested that PKC α is linked to the regulation of myoblast proliferation. However, this causal relationship could not be definitively established as no experiments based on selective inhibition of this isoform were carried out. In the present work, specific inhibition of the expression of PKC α in cultured myoblasts by using antisense oligonucleotide technology resulted in a significant decrease of culture cell density and DNA synthesis, clearly showing that this isoenzyme is involved in signalling pathways which promote muscle cell proliferation.  相似文献   

10.
The possibility of differential effects of triiodothyronine (T3) treatmentin vivoon myoblast and fibroblast cell proliferation was examined in control andmdxmuscle cultures. Cell isolates were purified in a Percoll gradient, sorted by flow cytometry (light scatter), and characterized as myoblasts and fibroblasts using anti-skeletal muscle myosin fluorescence. The two cell types were grown separately or remixed (1:1). Cultures were incubated with or without T3 (10−9M) for 19 h. Cells were either exposed to [3H]thymidine for 1 h and DNA prepared for scintillation counts or stained with propidium iodide for cell cycle analysis by flow cytometry. Overall [3H]thymidine uptake per cell was greater inmdxthan control cells (mainly fibroblasts and mixed cells) and was decreased by T3 only in myoblast and mixed cultures. Cell cycle data showed that the effects of T3 originated primarily at the G0/G1phase. There were moremdxthan control myoblasts at G0/G1without T3. After T3 treatment, more control fibroblasts than myoblasts were at G0/G1, but moremdxmyoblasts than fibroblasts were at G0/G1. In the absence of T3, there were also fewermdxthan control myoblasts in S. After T3, only the proportion ofmdxmyoblasts in S phase was reduced. Results are consistent with distinct T3 effects on muscle regenerationin vivoand support the hypothesis that cycling and proliferation ofmdxand control myoblasts are differentially modulated by T3. As control andmdxfibroblasts also showed distinct responses to T3, muscle regeneration likely occurs by a complex regulation of gene expression endogenous to specific cell types as well as interactions between cells of different lineage.  相似文献   

11.
Abstract

The emergence of antisense and antigene oligonucleotides as potential sequenceselective inhibitors of gene expression is evidenced by the growing number of ongoing clinicals trials against a variety of diseases. First generation antisense therapeutics utilize a uniformly modified oligodeoxyribonucleotide phosphorothioate where one non-bridging oxygen atom is formally replaced by sulfur, because natural DNA is unstable towards extra- and intracellular enzymes. Phosphoramidite chemistry has been widely used for the synthesis of phosphorothioate oligonucleotides because of its potential for automation, high coupling efficiency, ease of site-specific thioate linkage incorporation, and ready scalability. The large scale solid-supported synthesis of phosphorothioates is presently carried out by initial formation of the internucleotidic phosphite linkage followed by sulfurization of the phosphite triester to phosphorothioate using the Beaucage reagent. The resulting O,O-linked phosphorothioate diester linkage in the oligonucleotide is a chiral functional group. For a typical 20-mer there are 524,288 (219) possible diastereoisomers. Separation and individual quantification of this number of diastereomers is currently not feasible. In addition, the best reported methods for stereocontrolled synthesis of phosphorothioate oligomers are not presently useful for drug synthesis; that is, since net 100% enantiomeric excess is not achieved in the coupling step, the oligomeric product still consists of the same mixture of Sp and Rp diastereomers, except that the levels of all but one isomer are reduced to low individual levels. As a result, even a small change in the and Sp phosphorothioate diesters, due to racemization during coupling, indicating that the overall synthetic process is stereo reproducible and under inherent process control.  相似文献   

12.
Abstract

In vitra and in vivo antitumor activity of phosphorothioate antisense oligonucleotides targeted against two protein kinases within the mitogen-activated protein (MAP) kinase signaling cascade has been well documented by ISIS 3521/CGP 6412XA (targeted against PKC-α protein) and ISIS 5132KGP69846A (targeted against C-rwfl kinase). For both of these compounds, cationic lipid formulations are necessary to observe any pharmacological activity in cell culture. In contrast, in vivo functional delivery of phosphorothioate oligonucleotides to cells in tissues does not appear to be a prohlem. These oligonucleotides have demonstrated reduction in either PKC-α or C-raf gene expression in tissues or human tumor xenografts following systemic administration.  相似文献   

13.
Objectives: The aim of this study was to evaluate whether hypoxia and/or erythropoietin would be able to modulate proliferation/differentiation processes of rat and human myoblasts. Materials and methods: Rat L6 and primary human myoblasts were grown in 21% or 1% O2 in the presence or absence of recombinant human erythropoietin (RhEpo). Presence of erythropoietin receptors (EpoR) was assayed using RT‐PCR and Western blotting techniques. Cell proliferation was evaluated by determining the doubling time and kinetics of cultures by counting cells. Cell differentiation was analysed by determining myogenic fusion index using antibodies against the myosin heavy chain. Expression of myogenin and myosin heavy chain (MHC) proteins were evaluated using the Western blotting technique. Results: After 96 h culture in growth medium for 2.5 and 9 h, doubling time of L6 and human primary myoblasts respectively, had increased in 1% O2 conditions (P < 0.01). Kinetics of culture showed alteration in proliferation at 72 h in L6 myoblast cultures and at 4 days in human primary myoblasts. The myogenic fusion index had reduced by 30% in L6 myoblasts and by 20% in human myoblasts (P < 0.01). Expression of myogenin and MHC had reduced by around 50%. Despite presence of EpoR mRNA and protein, RhEpo did not counteract the effects of hypoxia either in L6 cells or in human myoblasts. Conclusions: The data show that exposure to hypoxic conditions (1% O2) of rat and human myoblasts altered their proliferation and differentiation processes. They also show that Epo is not an efficient growth factor to counteract this deleterious effect.  相似文献   

14.
15.
The ability of skeletal muscle myoblasts to differentiate in the absence of spontaneous fusion was studied in cultures derived from chicken embryo leg muscle, rat myoblast lines L6 and L8, and the mouse myoblast line G8. Following 48–96 hr of culture in a low-Ca2+ (25 μm), Mg2+-depleted medium, chicken myoblasts exhibited only 3–5% fusion whereas up to 64% of the cells fused in control cultures. Depletion of Mg2+ led to preferential elimination of fibroblasts, with the result that 97% of the mononucleated cells remaining at 120 hr exhibited a bipolar morphology and stained with antibodies directed against M-creatine kinase, skeletal muscle myosin, and desmin. Mononucleated myoblasts rarely showed visible cross-striations or M-line staining with anti-myomesin unless the medium was supplemented with 0.81 mM Mg2+, suggesting that Mg2+ plays a role in sarcomere assembly. Conditions of Ca2+ and Mg2+ depletion inhibited myoblast fusion in the rodent cell lines as well, but mononucleated myoblasts failed to differentiate under these conditions. Differentiated individual myoblasts from rat cell lines and from chicken cell cultures were obtained when fusion was inhibited by growth in cytochalasin B (CB). CB-treated rat myoblast cultures accumulated MM-CK to nearly twice the specific activity found in extensively fused control cultures of comparable age. Spherical cells which accumulated during CB treatment were isolated and shown to contain nearly eight times the CK specific activity present in nonspherical cells from the same cultures. Approximately 90% of these cells exhibited immunofluorescent staining with antibodies to skeletal muscle myosin, failed to incorporate [3H]thymidine or to form colonies in clonal subculture, and thus represent terminally differentiated rat myoblasts. Quantitative microfluorometric DNA measurements on individual nuclei demonstrated that the terminally differentiated myoblasts obtained in these experiments from both chicken and rat contain 2cDNA levels, suggesting arrest in the G0 stage of the cell cycle.  相似文献   

16.
Mouse mammary epithelial cells were plated onto 24-well culture plates (50,000 per well), allowed to attach and serum starved for 24 h. Following serum starvation, DNA synthesis was induced by the addition of 10% fetal calf serum and determined by a 1-h pulse with [3H]thymidine from 17 to 18 h after serum addition. Addition of oligonucleotides antisense to the translation start region of cyclic AMP-dependent protein kinase (kinase A) mRNA inhibited thymidine incorporation into DNA (total or percentage of cells incorporating thymidine, as measured by autoradiography). This inhibition was apparent whether compared to controls with no oligonucleotide addition, sense oligonucleotides, or mismatch oligonucleotides. Enzymatic assays indicated that the antisense oligonucleotides lowered kinase A activity in cells. Time course studies indicated that the inhibition in DNA synthesis was not an artifact of the time at which DNA synthesis was estimated. Long-term (4 day) cultures indicated that effects on induction of DNA synthesis were reflected in long-term cell proliferation.  相似文献   

17.
18.
Antisense oligonucleotides appear to offer considerable promise as sequence-specific inhibitors of gene expression. Different cellular targets for oligodeoxynucleotides with oncologic interest have been identified such as oncogenes, growth factors, and cell cycle-related genes. DNA polymerase α (polα) plays a relevant role in DNA synthesis and cell proliferation. Polα gene expression is constitutive throughout the cell cycle and its mRNA content and activity are related to the growth rate and neoplastic phenotype. The effects of a 18-mer polα antisense oligomer on the proliferation of the MDA-MB 231 breast cancer cell line have been investigated. After 48 h in culture with oligomers (10 μM), about 50% growth inhibition was observed in antisense-treated cells, as evaluated by 3-(4, 5-dimethythiazol-2yl)-2, 5-diphenyltetrazolium bromide assay and cell count. [3H]Thymidine incorporation exhibited a 90% inhibition of DNA synthesis associated to 64% accumulation of cells at the G1-S border of the cycle as by flow cytometry, at 24 h. Northern hybridization and SDS-PAGE of immunoprecipitated MDA-MB 231 cell lysates revealed a decreased expression of polα mRNA and a reduction of the 180-kDa polypeptide, respectively. Collectively, the data further confirm the relevance of polα in the replicative cycle, as well as strengthen the potentiality of the antisense strategy for the control of gene expression and cell growth.  相似文献   

19.
Myoblast transplantation (MT) is a cell-based gene therapy treatment, representing a potential treatment for Duchenne muscular dystrophy (DMD), cardiac failure and muscle trauma. The rapid and massive death of transplanted cells after MT is considered as a major hurdle which limits the efficacy of MT treatment. Heat shock proteins (HSPs) are overexpressed when cells undergo various insults. HSPs have been described to protect cells in vivo and in vitro against diverse insults. The aim of our study is to investigate whether HSP overexpression could increase myoblast survival after autotransplantation in pig intact skeletal muscle. HSP expression was induced by warming the cells at 42°C for 1 h. HSP70 expression was quantified by Western blot and flow cytometry 24 h after the treatment. To investigate the myogenic characteristics of myoblasts, desmin and CD56 were analysed by Western blot and flow cytometry; and the fusion index was measured. We also quantified cell survival after autologous transplantation in pig intact skeletal muscle and followed cell integration. Results showed that heat shock treatment of myoblasts induced a significative overexpression of the HSP70 (P < 0.01) without loss of their myogenic characteristics as assessed by FACS and fusion index. In vivo (n=7), the myoblast survival rate was not significantly different at 24 h between heat shock treated and nontreated cells (67.69% ± 8.35% versus 58.79% ± 8.35%, P > 0.05). However, the myoblast survival rate in the heat shocked cells increased by twofold at 48 h (53.32% ± 8.22% versus 28.27% ± 6.32%, P < 0.01) and more than threefold at 120 h (26.33% ± 5.54% versus 8.79% ± 2.51%, P < 0.01). Histological analysis showed the presence of non-heat shocked and heat shocked donor myoblasts fused with host myoblasts. These results suggested that heat shock pretreatment increased the HSP70 expression in porcine myoblasts, and improved the survival rate after autologous transplantation. Therefore, heat shock pretreatment of myoblast in vitro is a simple and effective way to enhance cell survival after transplantation in pig. It might represent a potential method to overcome the limitations of MT treatment.  相似文献   

20.
我们设计合成了特异性靶向乙型肝炎病毒(HBV)mRNA的反义RNA寡核苷酸P-2987、X-60和X-519.在瞬时转染pHBV1.3质粒(含有1.3拷贝的HBV基因组)的HepG2细胞和整合了HBV基因组的HepG2.2.15细胞中,转染2μmol/L的反义RNA寡核苷酸,ELISA和实时定量PCR结果表明,这3条寡核苷酸可以明显抑制HBV的复制和抗原表达.在HBV转基因鼠中,尾静脉注射反义RNA寡核苷酸,结果表明,肝脏中HBV的复制得到了抑制,但是血清中抗原含量和HBV DNA拷贝数没有明显变化.反义RNA寡核苷酸X-519与脂质体的复合物可以增强其对于HBV在肝脏中复制的抑制作用.在通过高压尾静脉注射pHBV1.3质粒建立的HBV急性感染模型中,反义RNA寡核苷酸X-519可以显著地抑制HBV在肝脏中的复制以及降低血清中病毒抗原水平和DNA拷贝数.上述实验结果说明,X-519及其与脂质体的复合物对于HBV的复制和抗原表达起到明显的抑制作用,可能作为一种潜在的针对HBV的基因治疗药物.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号