首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitosis in early embryos is independent of exogenous mitogens, although mitogen stimulations and subsequent activation of a mitogen-activated protein (MAP) kinase cascade are essential for the proliferation of somatic cells. The activation state of the MAP kinase cascade during early cleavage has never been reported. In the present study, factors involved in the MAP kinase cascade—Ras, Raf-1, 14–3-3, MEK, and ERKs—and their activation states were detected by immunoblotting during early cleavage of mouse embryos. We found the constant presence of these molecules in mouse early embryos and the activation of Raf-1 exclusively at the M-phase. An immunoprecipitation study revealed that active Raf-1 in the M-phase was dissociated from 14–3-3, as in somatic cells, whereas inactive Raf-1 was associated with 14–3-3. Surprisingly, the ERKs (MAP kinases) were not activated throughout early cleavage, although M-phase–specific activation of the MAP kinase kinase, MEK was observed. Myelin basic protein kinase activity was, however, significantly higher in the M-phase than in the interphase. These results indicate that the MAP kinase cascade is activated at the M-phase and that some MAP kinases other than ERKs are activated during early cleavage of mouse embryos. Mol. Reprod. Dev. 51:148–155, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

2.
Molecular aspects of mechanical stress-induced cardiac hypertrophy   总被引:1,自引:0,他引:1  
To elucidate the signal transduction pathway from external stimuli to nuclear gene expression in mechanical stress-induced cardiac hypertrophy, we examined the time course of activation of protein kinases such as Raf-1 kinase (Raf-1), mitogen-activated protein kinase kinase (MAPKK), MAP kinases (MAPKs) and 90-kDa ribosomal S6 kinase (p90rsk) in neonatal rat cardiomyocytes. Mechanical stretch rapidly activated Raf-1 and its maximal activation was observed at 1–2 min after stretch. The activity of MAPKK was also increased by stretch, with a peak at 5 min after stretch. In addition, MAPKs and p90rsk were maximally activated at 8 min and at 10–30 min after stretch, respectively. Next, the relationship between mechanical stress-induced hypertrophy and the cardiac renin-angiotensin system was investigated. When the stretch-conditioned culture medium was transferred to the culture dish of non-stretched cardiac myocytes, the medium activated MAPK activity slightly but significantly, and the activation was completely blocked by the type 1 angiotensin II receptor antagonist, CV-11974. However, activation of Raf-1 and MAPKs provoked by stretching cardiomyocytes was only partially suppressed by pretreatment with CV-11974. These results suggest that mechanical stress activates the protein kinase cascade of phosphorylation in cardiac myocytes in the order of Raf-1, MAPKK, MAPKs and p90rsk, and that angiotensin II, which is secreted from stretched myocytes, activates a part of these protein kinases.Abbreviations MAPK mitogen-activated protein kinase - MAPKK MAP kinase kinase - Raf-1 - Raf- 1 kinase p90rsk, 90 kDa ribosomal S6 kinase; AngII - angiotensin II - MAPKKK MAP kinase kinase kinase - rMAPK recombinant MAPKK fused to gluthathione S transferase - MMAKK recombinant MAPK fused to maltose binding protein - MBP myelin basic protein - ACE angiotensin-converting enzyme  相似文献   

3.
The mechanisms regulating the balance between intestinal epithelial cell proliferation and differentiation are essential to maintaining an intact mucosal barrier. Mitogen-activated protein (MAP) kinases appear to be key transducers of extracellular signals in these pathways. The goal of this study was to investigate the regulation of MAP kinase by tumor necrosis factor α (TNFα) and epidermal growth factor (EGF) in intestinal epithelial cells. The young adult mouse colon cell line was studied for TNFα and/or EGF regulation of MAP kinase in the presence or absence of the MAP kinase kinase (MEK1) inhibitor PD 98059. Proliferation was determined by hemocytometry, and activated MAP kinase was identified by Western blot analysis, in vitro kinase assay, and confocal laser immunofluorescent microscopy. TNFα stimulated sustained nuclear MAP kinase activity, while EGF stimulated transient cytoplasmic MAP kinase activity. Changing TNFα's sustained MAP kinase activation to transient converted TNFα from an anti-proliferative to a proliferative ligand. These findings demonstrate that both TNFα and EGF activate MAP kinase in intestinal epithelial cells. The kinetics and subcellular distribution of this enzyme activity may be pivotal in the transduction of divergent cellular responses in the intestinal epithelium with implications for altered proliferative signals in inflammatory bowel disease.  相似文献   

4.
Abstract: The cyclic AMP (cAMP)-induced inhibitory effect on cell proliferation was examined through inhibition of mitogen-activated protein kinase (MAP kinase) activation in cultured rat cortical astrocytes. Basic fibroblast growth factor (bFGF) at 10 ng/ml maximally stimulated MAP kinase activity, which peaks during 10 min and prolonged for 24 h. Likewise, DNA synthesis was maximally potentiated with 10 ng/ml bFGF and correlated with MAP kinase activity in a dose-dependent manner. Dibutyryl cAMP (dbcAMP) at 1 m M and isoproterenol at 10 µ M inhibited MAP kinase activation and DNA synthesis potentiation with bFGF and platelet-derived growth factor to the control level in cultured astrocytes and C6 glioma cells. The stimulation with bFGF caused a prominent translocation of MAP kinase from the cytosol to the nucleus after 1 h in astrocytes. Treatment of the cells with dbcAMP and isoproterenol completely prevented the translocation of MAP kinase. In experiments with 32P-labeled cultured astrocytes, phosphorylation of Raf-1 was apparently stimulated with bFGF. Treatment with dbcAMP or isoproterenol had a greatly inhibitory effect on the stimulation of Raf-1 phosphorylation with bFGF. Consistent with the effect on Raf-1 phosphorylation, dbcAMP and isoproterenol completely prevented bFGF-induced phosphorylation of MAP kinase kinases, target proteins of Raf-1. Our observations suggest that cAMP-induced suppression of cell growth in astrocytes is due to the inhibitory effect on activation of MAP kinase and its translocation to the nucleus and that the site of the cAMP action is located at Raf-1 or the upstream site of Raf-1.  相似文献   

5.
MAP kinase activation by growth factors depends on cell adhesion to the extracellular matrix. Disrupting the cell adhesion process in NIH 3T3 fibroblasts induced an almost complete inhibition of MAP kinase, which was impaired by proteasome inhibitors. In the absence of cell anchorage, c-Raf-1 expression was dramatically decreased after 24 h. This down-regulation was suppressed by proteasome inhibitors, suggesting that a proteasome-dependent degradation of Raf occurred in the absence of cell adhesion. Proteasome inhibitors did not affect Raf-1 levels in adherent cells, indicating that this degradation only occurred in the absence of cell adhesion. Finally, ectopic coexpression of Raf-1 and ubiquitin in HEK-293 and NIH 3T3 cells generated ubiquitylated forms of Raf-1, both in adherent and suspended cells, suggesting a possible ubiquitin-dependent degradation of the protein.  相似文献   

6.
Lee M  Han SS 《Cellular signalling》2002,14(4):373-379
In NIH3T3 cells, sphingosine-1-phosphate (S1P) caused a significant increase of Raf-1 kinase activity as early as 2 min. Interestingly, choline phosphate (ChoP) produced synergistic increase of S1P-stimulated Raf-1 kinase activation in the presence of ATP while showing additive effect in the absence of ATP. However, Raf-1 kinase activation induced by S1P decreased in the presence of ATP when applied alone. The overexpression of N-terminal fragment of Raf-1 (RfI) to inhibit Raf--Ras interaction caused the inhibition of S1P-induced Raf-1 kinase activation. Also, wortmannin, phosphatidylinositol-3-kinase (PI3K) inhibitor, exhibited inhibitory effects on S1P-induced activation of Raf-1 kinase. In addition, we demonstrated that the chemical antioxidant, N-acetylcysteine attenuated Raf-1 activation induced by S1P, suggesting that H(2)O(2) may be required for the signalling pathway leading to Raf-1 activation. This H(2)O(2)-induced Raf-1 kinase activation was also blocked by inhibition of Ras--PI3K signalling pathway using alpha-hydroxyfarnesylphosphonic acid and wortmannin. Taken together, these results indicate that S1P-induced Raf-1 kinase activation is mediated by H(2)O(2) stimulation of Ras--PI3K pathway, and is enhanced by ChoP in the presence of ATP.  相似文献   

7.
Mitogen-activated protein (MAP) kinases are serine/threonine kinases that are rapidly activated in response to mitogenic stimuli. Here we examined the enzymatic activity and phosphorylation state of the individual p44mapk and p42mapk isoforms during early G1 and late G1 phase of the mammalian cell cycle. Release of fibroblast cells from early G1 block was accompanied by a rapid rise in the myelin basic protein (MBP) kinase activity of p44mapk and p42mapk, which declined slowly over several hours to reach negligible values as cells enter S phase. When cells were released from late G1 block, the activity of p44mapk and p42mapk increased transiently, and then rapidly declined to baseline values during G1 to S phase transition. Cells released at the G1/S boundary in a medium lacking growth factors entered S phase in the complete absence of MAP kinase activity. Unlike MAP kinases, the histone H1 kinase activity of p33cdk2 was elevated in late G1-arrested cells and continued to increase during S phase entry. The enzymatic activation of p44mapk and p42mapk in both early G1 and late G1 phase was accompanied by an increase in the phosphothreonine and phosphotyrosine content of the proteins. These findings suggest that the sustained activation of MAP kinases during G1 progression and their inactivation at the G1/S transition are two regulatory processes involved in the mitogenic response to growth factors. © 1995 Wiley-Liss, Inc.  相似文献   

8.
Phospholipase D (PLD) is a phosphodiesterase that catalyses hydrolysis of phosphatidylcholine to produce phosphatidic acid and choline. In the presence of ethanol, PLD also catalyses the formation of phosphatidylethanol, which is a unique characteristic of this enzyme. Muscarinic receptor-induced changes in the activity of PLD were investigated in porcine tracheal smooth muscle by measuring the formation of [3H]phosphatidic acid ([3H]PA) and [3H]phosphatidylethanol ([3H]PEth) after labeling the muscle strips with [3H]palmitic acid. The cholinergic receptor agonist acetylcholine (Ach) significantly but transiently increased formation of both [3H]PA and [3H]PEth in a concentration-dependent manner (>105–400% vs. controls in the presence of 10–6 to 10–4 M Ach) when pretreated with 100 mM ethanol. The Ach receptor-mediated increase in PLD activity was inhibited by atropine (10–6 M), indicating that activation of PLD occurred via muscarinic receptors. Activation of protein kinase C (PKC) by phorbol-12-myristate-13-acetate (PMA) increased PLD activity that was effectively blocked by the PKC inhibitors calphostin C (10–8 to 10–6 M) and GFX (10–8 to 10–6 M). Ach-induced increases in PLD activity were also significantly, but incompletely, inhibited by both GFX and calphostin C. From the present data, we conclude that in tracheal smooth muscle, muscarinic acetylcholine receptor-induced PLD activation is transient in nature and coupled to these receptors via PKC. However, PKC activation is not solely responsible for Ach-induced activation of PLD in porcine tracheal smooth muscle.  相似文献   

9.
Abstract: We have previously reported that hydrogen peroxide (H2O2) induced a considerable increase of phospholipase D (PLD) activity and phosphorylation of mitogen-activated protein (MAP) kinase in PC12 cells. H2O2-induced PLD activation and MAP kinase phosphorylation were dose-dependently inhibited by a specific MAP kinase kinase inhibitor, PD 098059. In contrast, carbachol-mediated PLD activation was not inhibited by the PD 098059 pretreatment whereas MAP kinase phosphorylation was prevented. These findings indicated that MAP kinase is implicated in the PLD activation induced by H2O2, but not by carbachol. In the present study, H2O2 also caused a marked release of oleic acid (OA) from membrane phospholipids in PC12 cells. As we have previously shown that OA stimulates PLD activity in PC12 cells, the mechanism of H2O2-induced fatty acid liberation and its relation to PLD activation were investigated. Pretreatment of the cells with methylarachidonyl fluorophosphonate (MAFP), a phospholipase A2 (PLA2) inhibitor, almost completely prevented the release of [3H]OA by H2O2 treatment. From the preferential release of OA and sensitivity to other PLA2 inhibitors, the involvement of a Ca2+-independent cytosolic PLA2-type enzyme was suggested. In contrast, to OA release, MAFP did not inhibit PLD activation by H2O2. The inhibitory profile of the OA release by PD 098059 did not show any correlation with that of MAP kinase. These results lead us to suggest that H2O2-induced PLD activation may be mediated by MAP kinase and also that H2O2-mediated OA release, which would be catalyzed by a Ca2+-independent cytosolic PLA2-like enzyme, is not linked to the PLD activation in PC12 cells.  相似文献   

10.
Arg8-vasopressin (AVP) is a potent inducer of myogenic differentiation stimulating the expression of myogenic regulatory factors. To understand the mechanism of its effect on myogenesis, we investigated the early signals induced by AVP in myogenic target cells. In the rat skeletal muscle cell line L6, AVP selectively stimulates phosphatidylinositol (PtdIns) and phosphatidylcholine (PtdCho) breakdown, through the activation of phospholipases C and D (PLC, PLD), as shown by the generation of Ins(1,4,5)P3 and phosphatidylethanol (PtdEtOH), respectively. AVP induces the biphasic increase of sn-1,2-diacylglycerol (DAG) consisting in a rapid peak followed by a sustained phase, and the monophasic generation of phosphatidic acid (PA). Propranolol (a PA phosphatase inhibitor) and Zn2+ (a PLD inhibitor), abolish the sustained phase of DAG generation. Our data indicate that PtdIns-PLC activity is mainly responsible for the rapid phase of AVP-dependent DAG generation, whereas the sustained phase is dependent upon PtdCho-PLD activity and PA dephosphorylation, ruling out any significant role of DAG kinase. Modifications of PA level correlate with parallel changes of PLC activity, indicating a possible cross-talk between the two signal transduction pathways in the intact cell. PLD activation is elicited at AVP concentrations two orders of magnitude lower than those required for PLC activation. The differentiation of L6 myoblasts into multinucleated fibers is stimulated significantly by AVP at concentrations at which PLD, but not PLC, is activated. These data provide the first evidence for an important role of PLD in the mechanism of AVP-induced muscle differentiation. J. Cell. Physiol. 171:34–42, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

11.
We have recently described the properties of delta Raf-1:ER, a fusion protein consisting of an oncogenic form of human Raf-1 and the hormone binding domain of the human estrogen receptor. In this study, we demonstrate that activation of delta Raf-1:ER in quiescent 3T3 cells (C2 cells), while sufficient to promote morphological oncogenic transformation, was insufficient to promote the entry of cells into DNA synthesis. Indeed, activation of delta Raf-1:ER potently inhibited the mitogenic response of cells to platelet-derived growth factor (PDGF) and epidermal growth factor (EGF) treatment. Addition of beta-estradiol to quiescent C2 cells led to rapid, sustained activation of delta Raf-1:ER and MEK but only two- to threefold activation of p42 mitogen-activating protein (MAP) kinase activity. Addition of PDGF or EGF to quiescent C2 cells in which delta Raf-1:ER was inactive led to rapid activation of Raf-1, MEK, and p42 MAP kinase activities, and entry of the cells into DNA synthesis. In contrast, when delta Raf-1:ER was activated in quiescent C2 cells prior to factor addition, there was a significant inhibition of certain aspects of the signaling response to subsequent treatment with PDGF or EGF. The expression and activation of PDGF receptors and the phosphorylation of p70S6K in response to PDGF treatment were unaffected by prior activation of delta Raf-1:ER. In contrast, PDGF-mediated activation of Raf-1 and p42 MAP kinases was significantly inhibited compared with that of controls. Interestingly, the mitogenic and signaling responses of quiescent C2 cells to stimulation with fetal bovine serum or phorbol myristate acetate were unaffected by prior activation of delta Raf-1:ER. It seems likely that at least two mechanisms contribute to the effects of delta Raf-1:ER in these cells. First, activation of delta Raf-1:ER appeared to uncouple the activation of Raf-1 from the activation of the PDGF receptor at the cell surface. This may be due to the fact that mSOS1 is constitutively phosphorylated as a consequence of the activation of delta Raf-1:ER. Second, quiescent C2 cells expressing activated delta Raf-1:ER appear to contain an inhibitor of the MAP kinase pathway that, because of its apparent sensitivity to sodium orthovanadate, may be a phosphotyrosine phosphatase. It is likely that the inhibitory effects of delta Raf-1:ER observed in these cells are a manifestation of the activation of some of the feedback inhibition pathways that normally modulate a cell's response to growth factors. 3T3 cells expressing delta Raf-1:ER will be a useful tool in unraveling the role of Raf-1 kinase activity in the regulation of such pathways.  相似文献   

12.
M Eder  J D Griffin    T J Ernst 《The EMBO journal》1993,12(4):1647-1656
The ability of the receptor for the hematopoietic cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) to function in non-hematopoietic cells is unknown. NIH3T3 fibroblasts were transfected with cDNAs encoding the alpha and beta subunit of the human GM-CSF receptor and a series of stable transformants were isolated that bound GM-CSF with either low (KD = 860 - > 1000 pM) or high affinity (KD = 20-80 pM). Low affinity receptors were not functional. However, the reconstituted high affinity receptors were found to be capable of activating a number of signal transduction pathways, including tyrosine kinase activity, phosphorylation of Raf-1, and the transient induction of c-fos and c-myc mRNAs. The activation of protein tyrosine phosphorylation by GM-CSF in NIH3T3 cells was rapid (< 1 min) and transient (peaking at 5-20 min) and resulted in the phosphorylation of proteins of estimated molecular weights of 42, 44, 52/53 and 58-60 kDa. Some of these proteins co-migrated with proteins from myeloid cells that were phosphorylated on tyrosine residues in response to GM-CSF. In particular, p42 and p44 were identified as mitogen-activated protein kinases (MAP kinases), and the phosphorylation on tyrosine residues of p42 and p44 MAP kinases occurred at the same time as the phosphorylation of Raf-1. However, despite evidence for activation of many mitogenic signal transduction molecules, GM-CSF did not induce significant proliferation of transfected NIH3T3 cells. These results suggest that murine fibroblasts contain signal transducing molecules that can effectively interact with the human GM-CSF receptor, and that are sufficient to activate at least some of the same signal transduction pathways this receptor activates in myeloid cells, including activation of one or more tyrosine kinase(s). However, the level of activation of signal transduction is either below a threshold of necessary activity or at least one mitogenic signal necessary for proliferation is missing.  相似文献   

13.
14.
In many normal and transformed cell types, the intracellular second messenger cyclic AMP (cAMP) blocks the effects of growth factors and serum on mitogenesis, proliferation, and cell cycle progression. cAMP exerts these growth-inhibitory effects via inhibition of the mitogen-activated protein (MAP) kinase cascade. Here, using Hek293 and NIH 3T3 cells, we show that cAMP's inhibition of the MAP kinase cascade is mediated by the small G protein Rap1. Activation of Rap1 by cAMP induces the association of Rap1 with Raf-1 and limits Ras-dependent activation of ERK. In NIH 3T3 cells, Rap1 is required not only for cAMP's inhibition of ERK activation but for inhibition of cell proliferation and mitogenesis as well.  相似文献   

15.
Mitogen-activated protein (MAP) kinases are serine/threonine protein kinases that are activated in response to a variety of stimuli. Here we report the isolation of an alfalfa cDNA encoding a functional MAP kinase, termedMMK2. The predicted amino acid sequence ofMMK2 shares 65% identity with a previously identified alfalfa MAP kinase, termedMMK1. Both alfalfa cDNA clones encode functional kinases when expressed in bacteria, undergoing autophosphorylation and activation to phosphorylate myelin basic protein in vitro. However, only MMK2 was able to phosphorylate a 39 kDa protein from the detergent-resistant cytoskeleton of carrot cells. The distinctiveness ofMMK2 was further shown by complementation analysis of three different MAP kinase-dependent yeast pathways; this revealed a highly specific replacement of the yeastMPK1 (SLT2) kinase byMMK2, which was found to be dependent on activation by the upstream regulators of the pathway. These results establish the existence of MAP kinases with different characteristics in higher plants, suggesting the possibility that they could mediate different cellular responses.  相似文献   

16.
Summry— Numerous studies have been published these last few years on the involvement of MAP kinases in signal transduction reflecting their importance in cell cycle and cell growth controls. The identification and the characterization of their direct upstream activator has considerably enlarged our understanding of the phosphorylation network. The MAP kinase kinases (MAPKKs) are dual-specificity protein kinases which phosphorylate and activate MAP kinases. To date, MAPKK homologues have been found in yeast, invertebrates, amphibians, and mammals. Moreover, the MAPKK/MAPK phosphorylation switch constitutes a basic module activated in distinct pathways in yeast and in vertebrates. MAPKK regulation studies have led to the discovery of at least four MAPKK convergent pathways in higher organisms. One of these is similar to the yeast pheromone response pathway which includes the ste11 protein kinase. Two other pathways require the activation of either one or both of the serine/threonine kinase-encoded oncogenes c-Raf-I and c-Mos. Additionally, recent studies suggest a possible effect of the cell cycle control regulatory cyclin-dependent kinase 1 (cdc2) on MAPKK activity. Finally, MAPKKs seem to be essential transducers through which signals must pass before reaching the nucleus.  相似文献   

17.
The mitogen activated protein (MAP) kinase pathway of eukaryotes is stimulated by many growth factors and is required for the integration of multiple cellular signals. In order to study the function of MAP kinases during plant ovule development we have synthesized a Petunia hybrida ovule-specific cDNA library and screened for MAP protein kinase-related sequences using a DNA probe obtained by PCR. A full-length cDNA clone was identified (PMEK for Petunia hybrida MAP/ERK-related protein kinase) and shown to encode a protein related to the family of MAP/ERK protein kinases. Southern blot analysis showed that PMEK is a member of a small multigene family in P. hybrida. The cDNA codes for a protein (PMEK1) of 44.4 kDa with an overall sequence identity of 44% to the products of the mammalian ERK/MAP kinase gene, and the budding yeast KSS1 and FUS3 genes. PMEK1 displays 96 and 80% identity respectively with the tobacco NTF3 and Arabidopsis ATMPK1 kinases, and only 50% to the more distantly related plant MAP kinase MsERK1 from alfalfa. The two phosphorylation sites found in the loop between subdomain VII and VIII in all the other MAP kinases are also present in PMEK1. RNA gel blot and RT-PCR analyses demonstrated that PMEK1 is expressed in vegetative organs and preferentially accumulated in female reproductive organs of P. hybrida. In situ hybridization experiments showed that in the reproductive organs PMEK1 is expressed only in the ovary and not in the stamen.  相似文献   

18.
Recently we reported that simultaneous treatment of NIH 3T3 cells with the combination of phorbol myristate acetate (PMA) and hydrogen peroxide (H2O2) resulted in synergistic activation of Raf-1 kinase (Lee, M., Petrovics, G., and Anderson, W. B. (2003) Biochem. Biophys. Res. Commun. 311, 1026-1033). In this study we have demonstrated that PP2 (4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine), a potent and selective inhibitor of the Src-family tyrosine kinase, greatly potentiated the ability of PMA and/or H2O2 to activate Raf-1 kinase, whereas it blocked the tyrosine phosphorylation of Raf-1. Unlike PMA/H2O2 treatment, which showed transient activation, PP2-mediated Raf-1 activation was sustained and continued to increase through 4 h of treatment. Transient transfection studies with a dominant-negative mutant of Ras (N19Ras) indicated that this PP2-induced activation of Raf-1 was Ras-independent. Moreover, PP2 showed no effect on platelet-derived growth factor-induced Raf-1 activation. Interestingly, mutation of the reported Raf-1 Src family tyrosine kinase phosphorylation site by conversion of tyrosines 340 and 341 to phenylalanine (YY340/341FF Raf) had limited effect on the ability of PP2 to induce significant stimulation of Raf-1 kinase activity. Taken together, our results suggest that a tyrosine phosphorylation event is involved in the negative feedback regulation of Raf-1. Inhibition of a Src family tyrosine kinase by PP2 appears to alleviate this tyrosine kinase-mediated inhibition of Raf-1 and allow activating modification(s) of Raf-1 to proceed. This PP2 effect resulted in significant and sustained Ras-independent activation of Raf-1 by PMA and H2O2.  相似文献   

19.
Recruitment and activation of Raf-1 kinase by nitric oxide-activated Ras   总被引:6,自引:0,他引:6  
Deora AA  Hajjar DP  Lander HM 《Biochemistry》2000,39(32):9901-9908
  相似文献   

20.
Mitogen-activated protein (MAP) kinases cascades mediate cellular responses to a great variety of different extracellular signals in plants. Activation of a MAP kinase occurs after phosphorylation by an upstream dual-specificity protein kinase, known as a MAP kinase kinase. However, only a few of the MAPK kinases in Arabidopsis have been investigated. An active AtMKK3, 35S:AtMPK1, 35S:AtMPK2, and 35S:AtMPK3 constructs were built and their transformed plants were generated. The kinase activity of AtMPK1 or AtMPK2 was stimulated by active AtMKK3 in transient analysis of tobacco leaves. Coimmunoprecipitation experiments indicated interaction between AtMKK3 and AtMPK1 or AtMPK2 in the coexpressed tissues of AtMKK3 and AtMPK1 or AtMKK3 and AtMPK2. RT-PCR analysis showed that AtMKK3 and AtMPK1, or AtMKK3 and AtMPK2 were co-expressed in diverse plant tissues. Plants overexpressing AtMKK3 exhibited an enhanced tolerance to salt and were more sensitive to ABA. Plants overexpressing AtMPK1 or AtMPK2 were also more sensitive to ABA. AtMPK1 or AtMPK2 can be activated by cold, salt, and ABA. AtMKK3, AtMPK1, and AtMPK2 genes were induced by ABA or stress treatments. All these data indicated that the ABA signal transmitted to a MAPK kinase signaling cascade and could be amplified through MAP kinase1 or MAP kinase2 for increasing salt stress tolerance in Arabidopsis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号