首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soybean lipoxygenase is shown to catalyze the breakdown of polyunsaturated fatty acid hydroperoxides to produce superoxide radical anion as detected by spin trapping with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). In addition to the DMPO/superoxide radical adduct, the adducts of peroxyl, acyl, carbon-centered, and hydroxyl radicals were identified in incubations containing linoleic acid and lipoxygenase. These DMPO radical adducts were observed just prior to the system becoming anaerobic. Only a carbon-centered radical adduct was observed under anaerobic conditions. The superoxide radical production required the presence of fatty acid substrates, fatty acid hydroperoxides, active lipoxygenase, and molecular oxygen. Superoxide radical production was inhibited when nordihydroguaiaretic acid, butylated hydroxytoluene, or butylated hydroxyanisole was added to the incubation mixtures. We propose that polyunsaturated fatty acid hydroperoxides are reduced to form alkoxyl radicals and that after an intramolecular rearrangement, the resulting hydroxyalkyl radical reacts with oxygen, forming a peroxyl radical which subsequently eliminates superoxide radical anion.  相似文献   

2.
Free radicals in iron-containing systems   总被引:5,自引:0,他引:5  
All oxidative damage in biological systems arises ultimately from molecular oxygen. Molecular oxygen can scavenge carbon-centered free radicals to form organic peroxyl radicals and hence organic hydroperoxides. Molecular oxygen can also be reduced in two one-electron steps to hydrogen peroxide in which case superoxide anion is an intermediate; or it can be reduced enzymatically so that no superoxide is released. Organic hydroperoxides or hydrogen peroxide can diffuse through membranes whereas hydroxyl radicals or superoxide anion cannot. Chain reactions, initiated by chelated iron and peroxides, can cause tremendous damage. Chain carriers are chelated ferrous ion; hydroxyl radical .OH, or alkoxyl radical .OR, and superoxide anion O2-. or organic peroxyl radical RO2.. Of these free radicals .OH and RO2. appear to be most harmful. All of the biological molecules containing iron are potential donors of iron as a chain initiator and propagator. An attacking role for superoxide dismutase is proposed in the phagocytic process in which it may serve as an intermediate enzyme between NADPH oxidase and myeloperoxidase. The sequence of reactants is O2----O2-.----H2O2----HOCl.  相似文献   

3.
Amino acid and protein hydroperoxides can constitute a significant hazard if formed in vivo. It has been suggested that cysteine can form hydroperoxides after intramolecular hydrogen transfer to the commonly produced cysteine sulfur-centered radical. The resultant cysteine-derived carbon-centered radicals can react with oxygen at almost diffusion-controlled rate, forming peroxyl radicals which can oxidize other molecules and be reduced to hydroperoxides in the process. No cysteine hydroperoxides have been found so far. In this study, dilute air-saturated cysteine solutions were exposed to radicals generated by ionizing radiation and the hydroperoxides measured by an iodide assay. Of the three primary radicals present, the hydroxyl, hydrogen atoms and hydrated electrons, the first two were ineffective. However, electrons did initiate the generation of hydroperoxides by removing the –SH group and forming cysteine-derived carbon radicals. Under optimal conditions, 100% of the electrons reacting with cysteine produced the hydroperoxides with a 1:1 stoichiometry. Maximum hydroperoxide yields were at pH 5.5, with fairly rapid decline under more acid or alkaline conditions. The hydroperoxides were stable between pH 3 and 7.5, and decomposed in alkaline solutions. The results suggest that formation of cysteine hydroperoxides initiated by electrons is an unlikely event under physiological conditions.  相似文献   

4.
Oxygen is a diradical and because of its unique electronic configuration, it has the potential to form strong oxidants (e.g. superoxide radical, hydrogen peroxide and hydroxyl radical) called oxygen free radicals or partially reduced forms of oxygen (PRFO). These highly reactive oxygen species can cause cellular injury by oxidizing lipids and proteins as well as by causing strand breaks in nucleic acids. PRFO are produced in the cell during normal redox reactions including respiration and there are various antioxidants in the cell which scavenge these radicals. Thus in order to maintain a normal cell structure and function, a proper balance between free radical production and antioxidant levels is absolutely essential. Production of PRFO in the myocardium is increased during variousin vivo as well asin vitro pathological conditions and these toxic radicals are responsible for causing functional, biochemical and ultrastructural changes in cardiac myocytes. Indirect evidence of free radical involvement in myocardial injury is provided by studies in which protection against these alterations is seen in the presence of exogenous administration of antioxidants. Endogenous myocardial antioxidants have also been reported to change under various physiological as well as pathophysiological conditions. It appears that endogenous antioxidants respond and adjust to different stress conditions and failure of these compensatory changes may also contribute in cardiac dysfunction. Thus endogenous and/or exogenous increase in antioxidants might have a therapeutic potential in various pathological conditions which result from increased free radical production.  相似文献   

5.
The spectrum of biological processes in which oxygen is used by living systems is quite large, and the products include some damaging species of activated oxygen, particularly the superoxide radical (O-.2) and hydrogen peroxide (H2O2). Superoxide radicals and hydrogen peroxide, in turn, can lead to the formation of other damaging species: hydroxyl radicals (.OH) and singlet oxygen (1O2). Hydroxyl radicals react with organic compounds to give secondary free radicals that, in the presence of oxygen, yield peroxy radicals, peroxides, and hydroperoxides. Formation, interconversion, and reactivity of O-.2 and related activated oxygen species, methods available for their detection, and the basis of their biological toxicity are briefly reviewed.  相似文献   

6.
The EPR signal recorded in reaction medium containing L-lysine and methylglyoxal is supposed to come from the anion radical (semidione) of methylglyoxal and cation radical of methylglyoxal dialkylimine. These free radical inter-mediates might be formed as a result of electron transfer from dialkylimine to methylglyoxal. The EPR signal was observed in a nitrogen atmosphere, whereas only trace amounts of free radicals were registered under aerobic conditions. It has been established that the decay of methylglyoxal anion radical on aeration of the medium is inhibited by superoxide dismutase. Using the methods of EPR spectroscopy and lucigenin-dependent chemiluminescence, it has been shown that nonenzymatic generation of free radicals including superoxide anion radical takes place during the interaction of L-lysine with methylglyoxal — an intermediate of carbonyl stress — at different (including physiological) pH values. In the course of analogous reaction of L-lysine with malondialdehyde (the secondary product of the free radical derived oxidation of lipids), the formation of organic free radicals or superoxide radical was not observed.  相似文献   

7.
Oxygen radical chemistry of polyunsaturated fatty acids   总被引:24,自引:0,他引:24  
Polyunsaturated fatty acids (PUFA) are readily susceptible to autoxidation. A chain oxidation of PUFA is initiated by hydrogen abstraction from allylic or bis-allylic positions leading to oxygenation and subsequent formation of peroxyl radicals. In media of low hydrogen-donating capacity the peroxyl radical is free to react further by competitive pathways resulting in cyclic peroxides, double bond isomerization and formation of dimers and oligomers. In the presence of good hydrogen donators, such as alpha-tocopherol or PUFA themselves, the peroxyl radical abstracts hydrogen to furnish PUFA hydroperoxides. Given the proper conditions or catalysts, the hydroperoxides are prone to further transformations by free radical routes. Homolytic cleavage of the hydroperoxy group can afford either a peroxyl radical or an alkoxyl radical. The products of peroxyl radicals are identical to those obtained during autoxidation of PUFA; that is, it makes no difference whether the peroxyl radical is generated in the process of autoxidation or from a performed hydroperoxide. Of particular interest is the intramolecular rearrangement of peroxyl radicals to furnish cyclic peroxides and prostaglandin-like bicyclo endoperoxides. Other principal peroxyl radical reactions are the beta-scission of O2, intermolecular addition and self-combination. Alkoxyl radicals of PUFA, contrary to popular belief, do not significantly abstract hydrogens, but rather are channeled into epoxide formation through intramolecular rearrangement. Other significant reactions of PUFA alkoxyl radicals are beta-scission of the fatty chain and possibly the formation of ether-linked dimers and oligomers. Although homolytic reactions of PUFA hydroperoxides have received the most attention, hydroperoxides are also susceptible to heterolytic transformations, such as nucleophilic displacement and acid-catalyzed rearrangement.  相似文献   

8.
Plant senescence processes and free radicals   总被引:9,自引:0,他引:9  
Free radicals acting at sensitive subcellular sites, appear to play a pivotal role in both the deleterious and beneficial effects of maturation and senescence of various plant organs--leaves, flowers, and fruit. As evidenced by ESR spectrometry, spin trapping, specific membrane phase transition studies and enzyme kinetics, an important factor in the above processes appears to be lipoxygenase activity producing polyunsaturated fatty acid (PUFA) hydroperoxides and subsequently several free radical species and senescence-promoting compounds such as ethylene, malondialdehyde and jasmonic acid. The most intensely investigated are the oxy-free radical species including O2-., .OH, RO., ROO., PUFA and semiquinone free radicals. Higher plants are equipped with ways and means to combat free radicals and these may be classified under two general headings; (a) direct scavengers including SOD, ascorbic acid, and alpha-tocopherol acting in concert (b) incipient preventative mechanisms against radical formation, these include xanthine oxidase inhibitors, strategies based on endogenous H2O2 disposal in the form of peroxidative enzymes and glutathione turnover, and Ca2+ channel blockers. The antisenescence phytohormone cytokinin appears to possess a dual effect and may act in both capacities. The special case of delayed free radical formation in comparatively dry biological systems such as seeds is detailed, and specific free radical-generating photosensitizer compounds are also discussed.  相似文献   

9.
We have demonstrated with electron paramagnetic resonance (EPR) that organic hydroperoxides are decomposed to free radicals by both human polymorphonuclear leukocytes (PMNs) and purified myeloperoxidase. When tert-butyl hydroperoxide was incubated with either PMNs or purified myeloperoxidase, peroxyl, alkoxyl, and alkyl radicals were trapped by the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO). In the case of ethyl hydroperoxide, DMPO radical adducts of peroxyl and alkyl (identified as alpha-hydroxyethyl when trapped by tert-nitrosobutane) radicals were detected. Radical adduct formation was inhibited when azide was added to the incubation mixture. Myeloperoxidase-deficient PMNs produced DMPO radical adduct intensities at only about 20-30% of that of normal PMNs. Our studies suggest that myeloperoxidase in PMNs is primarily responsible for the decomposition of organic hydroperoxides to free radicals. The finding of the free radical formation derived from organic hydroperoxides by PMNs may be related to the cytotoxicity of this class of compounds.  相似文献   

10.
EPR spin trapping using the spin traps 5,5-dimethyl-1-pyrroline N-oxide (DMPO) and 3,5-dibromo-4-nitrosobenzene sulphonic acid (DBNBS) has been employed to examine the generation of radicals produced on reaction of a number of primary, secondary and lipid hydroperoxides with rat liver microsomal fractions in both the presence and absence of reducing equivalents. Two major mechanisms of radical generation have been elucidated. In the absence of NADPH or NADH, oxidative degradation of the hydroperoxide occurs to give initially a peroxyl radical which in the majority of cases can be detected as a spin adduct to DMPO; these radicals can undergo further reactions which result in the generation of alkoxyl and carbon-centered radicals. In the presence of NADPH (and to a lesser extent NADH) alkoxyl radicals are generated directly via reductive cleavage of the hydroperoxide. These alkoxyl radicals undergo further fragmentation and rearrangement reactions to give carbon-centered species which can be identified by trapping with DBNBS. The type of transformation that occurs is highly dependent on the structure of the alkoxyl radical with species arising from beta-scission, 1,2-hydrogen shifts and ring closure reactions being identified; these processes are in accord with previous chemical studies and are characteristic of alkoxyl radicals present in free solution. Studies using specific enzyme inhibitors and metal-ion chelators suggest that most of the radical generation occurs via a catalytic process involving haem proteins and in particular cytochrome P-450. An unusual species (an acyl radical) is observed with lipid hydroperoxides; this is believed to arise via a cage reaction after beta-scission of an initial alkoxyl radical.  相似文献   

11.
The reaction between hydroperoxides and the haem group of proteins and enzymes is important for the function of many enzymes but has also been implicated in a number of pathological conditions where oxygen binding proteins interact with hydrogen peroxide or other peroxides. The haem group in the oxidized Fe3+ (ferric) state reacts with hydroperoxides with a formation of the Fe4+=O (oxoferryl) haem state and a free radical primarily located on the pi-system of the haem. The radical is then transferred to an amino acid residue of the protein and undergoes further transfer and transformation processes. The free radicals formed in this reaction are reviewed for a number of proteins and enzymes. Their previously published EPR spectra are analysed in a comparative way. The radicals directly detected in most systems are tyrosyl radicals and the peroxyl radicals formed on tryptophan and possibly cysteine. The locations of the radicals in the proteins have been reported as follows: Tyr133 in soybean leghaemoglobin; alphaTyr42, alphaTrp14, betaTrp15, betaCys93, (alphaTyr24-alphaHis20), all in the alpha- and beta-subunits of human haemoglobin; Tyr103, Tyr151 and Trp14 in sperm whale myoglobin; Tyr103, Tyr146 and Trp14 in horse myoglobin; Trp14, Tyr103 and Cys110 in human Mb. The sequence of events leading to radical formation, transformation and transfer, both intra- and intermolecularly, is considered. The free radicals induced by peroxides in the enzymes are reviewed. Those include: lignin peroxidase, cytochrome c peroxidase, cytochrome c oxidase, turnip isoperoxidase 7, bovine catalase, two isoforms of prostaglandin H synthase, Mycobacterium tuberculosis and Synechocystis PCC6803 catalase-peroxidases.  相似文献   

12.
Abstract

A study of the involvement of free oxygen radicals in trapping and digestion of insects by carnivorous plants was the main goal of the present investigation. We showed that the generation of oxygen free radicals by pitcher fluid of Nepenthes is the first step of the digestion process, as seen by EPR spin trapping assay and gel-electrophoresis. The EPR spectrum of N. gracilis fluid in the presence of DMPO spin trap showed the superposition of the hydroxyl radical spin adduct signal and of the ascorbyl radical signal. Catalase addition decreased the generation of hydroxyl radicals showing that hydroxyl radicals are generated from hydrogen peroxide, which can be derived from superoxide radicals. Gel-electrophoresis data showed that myosin, an abundant protein component of insects, can be rapidly broken down by free radicals and protease inhibitors do not inhibit this process. Addition of myoglobin to the pitcher plant fluid decreased the concentration of detectable radicals. Based on these observations, we conclude that oxygen free radicals produced by the pitcher plant aid in the digestion of the insect prey.  相似文献   

13.
EPR spin trapping has been employed to directly detect radical production in isolated rat nuclei on exposure to a variety of hydroperoxides and related compounds which are known, or suspect, tumour promoters. The hydroperoxides, in the absence of reducing equivalents, undergo oxidative cleavage, generating peroxyl radicals. In the presence of NADPH (and to a lesser extent NADH) reductive cleavage of the OO bond generates alkoxyl radicals. These radicals undergo subsequent rearrangements and reactions (dependent on the structure of the alkoxyl radical), generating carbon-centred radicals. Acyl peroxides and peracids appear to undergo only reductive cleavage of the OO bond. With peracids this cleavage can generate aryl carboxyl (RCO2·) or hydroxyl radicals (HO·); with acyl peroxides, aryl carboxyl radicals are formed and, in the case of t-butyl peroxybenzoate, alkoxyl radicals (RO·). The radicals detected with each peroxide are similar in type to those detected in the rat liver microsomal fraction, although the extent of radical production is lower. The subsequent reactions of the initially generated radicals are similar to those determined in homogenous chemical systems, suggesting that they are in free solution. Experiments with NADPH/NADH, heat denaturation of the nuclei and various inhibitors suggest that radical generation is an enzymatic process catalysed by haemproteins, in particular cytochrome P-450, and that NADPH/cytochrome P-450 reductase is involved in the reductive cleavage of the OO bond. The generation of these radicals by the rat liver nuclear fraction is potentially highly damaging for the cell due to the proximity of the generating source to DNA. Several previous studies have shown that some of the radicals detected in this study, such as aryl carboxyl and aryl radicals, can damage DNA, via various reactions which results in the generation of strand breaks and adducts to DNA bases: these processes are suggested to play an important role in the tumour promoting activity of these hydroperoxides and related compounds.  相似文献   

14.
Of the available techniques used to identify free radicals, spin-trapping offers the unique opportunity to simultaneously measure and distinguish among a variety of important biologically generated free radicals. For superoxide and hydroxyl radical, the spin trap 5,5-dimethyl-1-pyrroline 1-oxide (DMPO) is most frequently used. However, this nitrone has several drawbacks. For example, its reaction with superoxide is slow, having a second-order rate constant around 10 M-1 s-1. Because of this, high concentrations of DMPO are essential in order to observe the corresponding spin-trapped adduct, 5,5-dimethyl-2-hydroperoxy-1-pyrrolidinyloxy. This may, in some cases, lead to cellular toxicity. In an attempt to circumvent this serious limitation, it has been proposed that an indirect approach be employed to detect and identify free radicals generated as a consequence of ischemia/reperfusion injury. In the direct (most frequently used) approach, the spin trap is first added to an isolated perfused organ under the appropriate experimental conditions. Then, the infusion buffer containing the spin-trap adduct(s) is placed into an quartz flat cell to be inserted into an ESR spectrometer. In the indirect method, the spin trap is added to the perfusate, which had previously exited the organ. Therefore, with this method one can prevent any spin-trap-mediated toxicities to the isolated perfused organ. However, because of the very rapid rate of free radical reactions catalyzed by either superoxide or hydroxyl radical, it is questionable whether ESR spectra recorded using this indirect method result from the actual spin-trapping of free radicals. In this report, we evaluated the indirect spin-trapping technique in light of the kinetic considerations discussed above.  相似文献   

15.
Published experimental data pertaining to the participation of coenzyme Q as a site of free radical formation in the mitochondrial electron transfer chain and the conditions required for free radical production have been reviewed critically. The evidence suggests that a component from each of the mitochondrial NADH-coenzyme Q, succinate-coenzyme Q, and coenzyme QH2-cytochrome c reductases (complexes I, II, and III, most likely a nonheme iron-sulfur protein of each complex, is involved in free radical formation. Although the semiquinone form of coenzyme Q may be formed during electron transport, its unpaired electron most likely serves to aid in the dismutation of superoxide radicals instead of participating in free radical formation. Results of studies with electron transfer chain inhibitors make the conclusion dubious that coenzyme Q is a major free radical generator under normal physiological conditions but may be involved in superoxide radical formation during ischemia and subsequent reperfusion. Experiments at various levels of organization including subcellular systems, intact animals, and human subjects in theclinical setting, support the view that coenzyme Q, mainly in its reduced state, may act as an antioxidant protecting a number of cellular membranes from free radical damage.  相似文献   

16.
Mitochondrial production of oxygen radicals seems to be involved in many diseases and aging. Recent studies clearly showed that a substantial part of the free radical generation of rodent mitochondria comes from complex I. It is thus important to further localize the free radical generator site within this respiratory complex. In this study, superoxide production by heart and nonsynaptic brain submitochondrial particles from up to seven mammalian species, showing different longevities, were studied under different conditions. The results, taking together, show that rotenone stimulates NADH-supported superoxide generation, confirming that complex I is a source of oxygen radicals in mammals, in general. The rotenone-stimulated NADH-supported superoxide production of the heart and nonsynaptic brain mammalian submitochondrial particles was inhibited both by p-chloromercuribenzoate and by ethoxyformic anhydride. These results localize the complex I oxygen radical generator between the ferricyanide and the ubiquinone reduction site, making iron—sulfur centers possible candidates, although unstable semiquinones can not be discarded. The results also indicate that the previously described inverse correlation between rates of mitochondrial oxygen radical generation and mammalian longevity operates through mechanisms dependent on the presence of intact functional mitochondria.  相似文献   

17.
The reactions of organic free radicals, acting as either reductants or oxidants, have been studied by pulse radiolysis in neutral aqueous solution at room temperature. Manyhydroxyl-substituted aliphatic carbon-centred radicals and one-electron adducts have been shown to be good one-electron reductants, while several oxygen-, sulphur- and nitrogen- (but not carbon-) centred free radicals have been shown to be good one-electron oxidants. Several carbon-centred radicals can be reduced rapidly by hydrogen transfer, from undissociated thiol compounds which can thus act as catalysts facilitating the overall reduction of a carbon-centred radical by an electron-donating molecule. Kinetic considerations influenced by the one-electron redox potentials of the radical-molecule couples involved, determine whether a particular reaction predominates. In this paper examples of such reactions, involving a water-soluble derivative of vitamin E (Trolox C) and the coenzyme NADH, are described, together with studies showing (a) that even in complex multi-solute systems some organic peroxy radicals can inactiviate alcohol dehydrogenase under conditions where the superoxide radical does not, and (b) the superoxide radical can be damaging if urate is also present, and this damage can be reduced by the presence of superoxide dismutase.  相似文献   

18.
Of the available techniques used to identify free radicals, spin-trapping offers the unique opportunity to simultaneously measure and distinguish among a variety of important biologically generated free radicals. For superoxide and hydroxyl radical, the spin trap 5,5-dimethyl-1-pyrroline 1-oxide (DMPO) is most frequently used. However, this nitrone has several drawbacks. For example, its reaction with superoxide is slow, having a second-order rate constant around 10 −1 −1. Because of this, high concentrations of DMPO are essential in order to observe the corresponding spin-trapped adduct, 5,5-dimethyl-2-hydroperoxy-1-pyrrolidinyloxy. This may, in some cases, lead to cellular toxicity. In an attempt to circumvent this serious limitation, it has been proposed that an indirect approach be employed to detect and identify free radicals generated as a consequence of ischemia/reperfusion injury. In the direct (most frequently used) approach, the spin trap is first added to an isolated perfused organ under the appropriate experimental conditions. Then, the infusion buffer containing the spin-trap adduct(s) is placed into an quartz flat cell to be inserted into an ESR spectrometer. In the indirect method, the spin trap is added to the perfusate, which had previously exited the organ. Therefore, with this method one can prevent any spin-trap-mediated toxicities to the isolated perfused organ. However, because of the very rapid rate of free radical reactions catalyzed by either superoxide or hydroxyl radical, it is questionable whether ESR spectra recorded using this indirect method result from the actual spin-trapping of free radicals. In this report, we evaluated the indirect spin-trapping technique in light of the kinetic considerations discussed above.  相似文献   

19.
The possible involvement of metal ions and free radicals in the cytotoxic mechanism of Adriamycin (ADR) was investigated, using a model system ofEscherichia coli cells. It is shown thatE. coli mediated the production of free radicals under anaerobic (ADR-semiquinone) and aerobic (superoxide) conditions. ADR-induced loss of colony-forming ability was enhanced by the addition of iron (Fe) chelates. These observations suggested that a Fenton-type free radical mechanism was responsible for ADR toxicity. However, the mortality rate was essentially unchanged by the exclusion of oxygen. It was also unaffected by the addition of H2O2, catalase, or chelating agents. Cu(II), Zn(II) or Mg(II) had no effect on ADR toxicity. ADR and iron chelates did not induce measurable amounts of DNA strand-breaks. These observations suggest a mechanism of ADR-induced cell killing that is enhanced by Fe chelates, but does not directly involve oxygen-derived free radicals.  相似文献   

20.
A M Michelson  J Maral 《Biochimie》1983,65(2):95-104
Presence of carbonate anions increases the oxidation of luminol in different chemical systems. Lysis of human erythrocytes due to the action of dihydroxyfumaric acid or of perborate is also stimulated by carbonate ions. These anions also change considerably the loss of activity of different enzymes treated with superoxide, hydroxyl or formate radicals and can increase or decrease the effect as a function of the nature of the active centre of the enzyme. The relative effects of superoxide, hydroxyl, formate and carbonate radicals for the inactivation of various enzymes (superoxide dismutases, catalase, ribonuclease, glucose oxidase and glutathione peroxidase) have been examined. Three systems were used: gamma-irradiation under different conditions, photoproduction of radicals and sonication. Inactivation of the enzymes is a function not only of the radical used but also of the nature of the active site. Thus glutathione peroxidase is remarkably resistant to hydroxyl radicals while the superoxide dismutases are rapidly inactivated by carbonate radicals. All of the results combine to show that the presence or absence of carbonate anions must be considered in all studies of oxygen containing free radicals whether chemical, biochemical or biological or high energy irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号