首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In continuation of our studies on the determination of the structural features of functionalized peptides in solution by combining time-resolved fluorescence data and molecular mechanics results, the conformational properties of a series of linear, homo-Aib peptides in methanol (a structure-supporting solvent) were investigated. These compounds have the general formula P(Aib)nN, where Aib is alpha-aminoisobutyric acid, N is naphthalene and P is the monomethylated protoporphyrin IX, the two latter chromophores being covalently attached to the peptide C- and N-termini, respectively, while n=3, 6 and 9. According to 1H NMR and IR spectra, the peptides investigated largely populate a 3(10)-helical structure in CDCl3, which is also a structure-supporting solvent. Both steady-state and time-resolved fluorescence measurements show a strong quenching of the N emission that parallels an increase of the P fluorescence intensity, suggesting the occurrence of long-range energy transfer from 1N* to ground-state P. Comparison of quenching efficiencies and lifetime pre-exponents with those obtained theoretically from the deepest energy minimum conformers is very satisfactory. The computed structures, built up by partially taking into account the solvent medium, exhibit a rigid, highly compact arrangement, owing to both the 3(10)-helix conformation of the backbone chain and the very few peptide-to-chromophore covalent linkages. As a result, only one or two stable conformations for each peptide were theoretically found, in full agreement with the time-resolved fluorescence data. Orientational effects between the probes must be taken into account for a correct interpretation of the fluorescence decay results, which implies that interconversion among conformational substates of the N linkages is slower than 10 ns, corresponding to the upper limit of the energy transfer characteristic time.  相似文献   

2.
Carlos Alemn 《Biopolymers》1994,34(7):841-847
A quantum mechanical study to compare the ability of α-aminoisobutyric acid (Aib), de-hydroalanine (ΔAla), and alanine (Ala) residues to stabilize helical conformations has been performed. To address the study, the oligopeptides Xn (X = Aib, ΔAla and Ala), where n varies from 1 to 6, were computed with the AM1 semiempirical method. The results show that the residues modified at the Cα carbon atom, Aib and ΔAla, are better helical formers than Ala. Thus, a cooperative energy effect was found for both residues, and especially for ΔAla. These terms permit the understanding the different conformational behaviors between Ala and its Cα-modified residues Aib and ΔAla. This trend is important for de novo protein design, where Aib and ΔAla must be considered useful residues in the design of synthetic helical motifs. © 1994 John Wiley & Sons, Inc.  相似文献   

3.
The CD spectra of the peptides Boc-X-(Aib-X)n-OMe (n = 1, 2, 3) and Boc-(Aib-X)5-OMe, where X = L -Ala or L -Val have been examined in several solvents. The X = Ala and Val peptides behave similarly in all solvents, suggesting that the Aib residues dominate the folding preferences of these peptides. The decapeptides adopt helical conformations in methanol and trifluoroethanol, with characteristic negative CD bands at 222 and 205 nm. In the heptapeptides, similar spectra with reduced intensities are observed. Comparison with nmr studies suggest that estimates of helical content in oligopeptides by CD methods may lead to erroneous conclusions. The pentapeptides yield solvent-dependent spectra indicative of conformational perturbations. Peptide association in dioxane results in an unusual spectrum with a single negative band at 210 nm for the decapeptides. Disaggregation is induced by the addition of methanol or water to dioxane solutions. Aggregation of the heptapeptides is less pronounced in dioxane, suggesting that a critical helix length may be necessary to promote association stabilized by helix dipole–dipole interactions.  相似文献   

4.
High-resolution solid-state 13C-nmr spectra of two series of fully protected oligopeptides, Z-(Aib)n-OMe (n = 3?8) and Z-(Aib)n-L-Leu-(Aib)2-OMe (n = 0?5), were recorded to gain insight into main-chain length dependence for 310-helix formation. We found that all the oligopeptides examined adopt an incipient or a fully developed 310-helical structure, as judged from the characteristic splitting of the Cβ signals as well as the conformation-dependent displacements of the Cα and C?O peaks.  相似文献   

5.
A series of covalently bound peptide-protoporphyrin-peptide compounds, also carrying naphthalene (N) to allow a photophysical investigation, were synthesized. Their general formula is P(nN)(2), where P refers to protoporphyrin IX, and n to the number of amino acids in the sequence Boc-Leu-Leu-Lys-(Ala)(x) -Leu-Leu-Lys-OtBu of each backbone chain (x = 0-3; n = x + 6). Their structural features in methanol solution were investigated by ir and CD spectra, and by steady-state and time resolved fluorescence experiments as well. The ir spectra indicate that intramolecularly H-bonded conformations form, and CD data in both methanol and water-methanol mixture suggest the presence of alpha-helix structure. Quenching of excited naphthalene takes place by electronic energy transfer from singlet N* to P ground state. Fluorescence decays coupled with molecular mechanics calculations indicate that two conformers for each dimeric peptide are the major contributors to the observed phenomena. These conformers are characterized by a globular, protein-like structure, where the protoporphyrin resides in a central pocket, while the two N groups are externally situated. Of the four N linkages in the two conformers, three of them attain a very similar steric arrangement around the central P molecule, in terms of both center-to-center distance and mutual orientation, while the fourth experiences a different steric disposition as compared to the others. Experimental photophysical parameters satisfactorily compare with those obtained by theoretical calculations, within the F?rster mechanism for long-range energy transfer, only when the mutual orientation of the chromophores was also taken into account. This implies that interconversion among conformational substates of probes linkages is slow on the time scale of the energy transfer process.  相似文献   

6.
The present work describes three novel nonpolar host peptide sequences that provide a ready assessment of the 310- and α-helix compatibilities of natural and unnatural amino acids at different positions of small- to medium-size peptides. The unpolar peptides containing Ala, Aib, and a C-terminal p-iodoanilide group were designed in such a way that the peptides could be rapidly assembled in a modular fashion, were highly soluble in solvent mixtures of triflouroethanol and H2O for CD- and two-dimensional (2D) nmr spectroscopic analyses, and showed excellent crystallinity suited for x-ray structure analysis. To validate our approach we synthesized 9-mer peptides 79a–96 (Table IV), 12-mer peptides 99–110c (Table V), and 10-mer peptides 120a–125d and 129–133 (Table VI and Scheme 8) incorporating a series of optically pure cyclic and open-chain (R)- and (S)-α,α-disubstituted glycines 1–10 (Figure 2). These amino acids are known to significantly modulate the conformations of small peptides. Based on x-ray structures of 9-mers 79a, 80, and 87 (Figures 4–7), 10-mers 124c, 131, and 132 (Figures 9–12), and 12-mer peptide 102b (Figure 13), CD spectra of all peptides recorded in acidic, neutral, and basic media and detailed 2D-nmr analyses of 9-mer peptide 86 and 12-mer 102b, several interesting conformational observations were made. Especially interesting results were obtained using the convex constraint CD analysis proposed by Fasman on 9-mer peptides 79a–d, 80, 81, 86, and 87, which allowed us to determine the relative content of 310- and α-helical conformations. These results were fully supported by the corresponding x-ray and 2D-nmr analyses. As a striking example we found that the (S)- and (R)-β-tetralin derived amino acids (R)- and (S)-1 show excellent α-helix stabilisation, more pronounced than Aib and Ala. These novel reference peptide sequences should help establish a scale for natural and unnatural amino acids concerning their intrinsic 310- and α-helix compatibilities at different positions of medium-sized peptides and thus improve our understanding in the folding processes of peptides. © 1997 John Wiley & Sons, Inc. Biopoly 42: 575–626, 1997  相似文献   

7.
The conformation of oligomers of β‐amino acids of the general type Ac‐[β‐Xaa]n‐NHMe (β‐Xaa = β‐Ala, β‐Aib, and β‐Abu; n = 1–4) was systematically examined at different levels of ab initio molecular orbital theory (HF/6‐31G*, HF/3‐21G). The solvent influence was considered employing two quantum‐mechanical self‐consistent reaction field models. The results show a wide variety of possibilities for the formation of characteristic elements of secondary structure in β‐peptides. Most of them can be derived from the monomer units of blocked β‐peptides with n = 1. The stability and geometries of the β‐peptide structures are considerably influenced by the side‐chain positions, by the configurations at the Cα‐ and Cβ‐atoms of the β‐amino acid constituents, and especially by environmental effects. Structure peculiarities of β‐peptides, in particular those of various helix alternatives, are discussed in relation to typical elements of secondary structure in α‐peptides. © 1999 John Wiley & Sons, Inc. Biopoly 50: 167–184, 1999  相似文献   

8.
The new polypeptide antibiotic trichotoxin A-40 is isolated by chloroform/methanol extraction from the dry mycelium of Trichoderma viride NRRL 5242. The lipophilic peptide is purified by chromatography on Kieselgel H-60 and reverse-phase chromatography on Lichrosorb RP-8. The new antibiotic differs in amino acid composition and various chemical and physicochemical properties from similar peptides such as trichotoxin A, the suzukacillins or alamethicins. The amino acid composition is (Pro)1 (Gly)1 (Ala)2 (Leu)2 (Aib)10 (Glx)2. (Aib, α-aminoisobutyric acid.) The antibiotic has a carboxyl group which can be esterified by diazomethane, which results in slightly enhanced membrane-modifying activities.The peptide exhibits a right-handed α-helical conformation increasing about two-fold from aqueous to lipophilic media as shown by solvent-dependent circular dichroism measurements. Most of the 13C-NMR resonances can be assigned unequivocally and amino acids situated in the α-helical part show characteristic shift differences from those in the non-helical regions. No β-phenylalaninol residue could be identified by 13C-NMR and ultraviolet spectroscopy, as can be for alamethicins and suzukacillins. A pronounced hemolytic action is found on human erythrocytes, which develops at micromolar concentrations. Trichotoxin A-40 induces a voltage-dependent ionic conductance in bilayer lipid membranes and it can serve as a new pore-forming model system for structure/activity studies in membrane excitation by peptides.  相似文献   

9.
The amino acid Aib predisposes a peptide to be helical with context‐dependent preference for either 310‐ or α‐ or a mixed helical conformation. Short peptides also show an inherent tendency to be unfolded. To characterize helical and unfolded states adopted by water‐soluble Aib‐containing peptides, the conformational preference of Ac‐Ala‐Aib‐Ala‐Lys‐Ala‐Aib‐Lys‐Ala‐Lys‐Ala‐Aib‐Tyr‐NH2 was determined by CD, NMR and MD simulations as a function of temperature. Temperature‐dependent CD data indicated the contribution of two major components, each an admixture of helical and extended/polyproline II structures. Both right‐ and left‐handed helical conformations were detected from deconvolution of CD data and 13C NMR experiments. The presence of a helical backbone, more pronounced at the N‐terminal, and a temperature‐induced shift in α‐helix/310‐helix equilibrium, more pronounced at the C‐terminal, emerged from NMR data. Starting from polyproline II, the N‐terminal of the peptide folded into a helical backbone in MD simulations within 5 ns at 60°C. Longer simulations showed a mixed‐helical backbone to be stable over the entire peptide at 5°C while at 60°C the mixed‐helix was either stable at the N‐terminus or occurred in short stretches through out the peptide, along with a significant population of polyproline II. Our results point towards conformational heterogeneity of water‐soluble Aib‐based peptide helices and the associated subtleties. The problem of analyzing CD and NMR data of both left‐ and right‐handed helices are discussed, especially the validity of the ellipticity ratio [θ]222/[θ]207, as a reporter of α‐/310‐ population ratio, in right‐ and left‐handed helical mixtures. Proteins 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

10.
Z-Dehydrophenylalanine (ΔzPhe) possessing four oligopeptides, Boc-(L -Ala-ΔzPhe-Aib)n-OCH3 (n = 1–4: Boc, t-butoxycarbonyl; Aib, α-aminoisobutyric acid), were synthesized, and their solution conformations were investigated by 1H-nmr, ir, uv, and CD spectroscopy and theoretical CD calculation. 1H-nmr (the solvent accessibility of NH groups) and ir studies indicated that all the NH groups except for those belonging to the N-terminal L -Ala-ΔzPhe moiety participate in intramolecular hydrogen bonding in chloroform. This suggests that the peptides n = 2–4 have a 4 → 1 hydrogen-bonding pattern characteristic of 310-helical structures. The uv spectra of all these peptides recorded in chloroform and in trimethyl phosphate showed an intense maximum around 276 nm assigned to the ΔzPhe chromophores. The corresponding CD spectra of the peptides n = 2–4 showed exciton couplets with a negative peak at longer wavelengths, whereas that of the peptide n = 1 showed only weak signals. Theoretical CD spectra were calculated for the peptides n = 2–4 of several helical conformations, on the basis of exciton chirality method. This calculation indicated that the three peptides form a helical conformation deviating from the perfect 310-helix that contains three residues per turn, and that their side chains of Δz Phe residues are arranged regularly along the helix. The center-to-center distance between the nearest phenyl pair(s) was estimated to be ~ 5.5 Å. The chemical shifts of the ΔzPhe side-chain protons (Hβ and aromatic H) for the peptides n = 2–4 indicated anisotropic shielding effect of neighboring phenyl group(s); the effect also supports a regular arrangement of the Δz Phe side chains along the helical axis. © 1993 John Wiley & Sons, Inc.  相似文献   

11.
To understand the terminal effect of chiral residue for determining a helical screw sense, we adopted five kinds of peptides IV containing N‐ and/or C‐terminal chiral Leu residue(s): Boc–L ‐Leu–(Aib–ΔPhe)2–Aib–OMe ( I ), Boc–(Aib–ΔPhe)2–L ‐Leu–OMe ( II ), Boc–L ‐Leu–(Aib–ΔPhe)2–L ‐Leu–OMe ( III ), Boc–D ‐Leu–(Aib–ΔPhe)2–L ‐Leu–OMe ( IV ), and Boc–D ‐Leu–(Aib–ΔPhe)2–Aib–OMe ( V ). The segment –(Aib–ΔPhe)2– was used for a backbone composed of two “enantiomeric” (left‐/right‐handed) helices. Actually, this could be confirmed by 1H‐nmr [nuclear Overhauser effect (NOE) and solvent accessibility of NH resonances] and CD spectroscopy on Boc–(Aib–ΔPhe)2–Aib–OMe, which took a left‐/right‐handed 310‐helix. Peptides IV were also found to take 310‐type helical conformations in CDCl3, from difference NOE measurement and solvent accessibility of NH resonances. Chloroform, acetonitrile, methanol, and tetrahydrofuran were used for CD measurement. The CD spectra of peptides IIII in all solvents showed marked exciton couplets with a positive peak at longer wavelengths, indicating that their main chains prefer a left‐handed screw sense over a right‐handed one. Peptide V in all solvents showed exciton couplets with a negative peak at longer wavelengths, indicating it prefers a right‐handed screw sense. Peptide IV in chloroform showed a nonsplit type CD pattern having only a small negative signal around 280 nm, meaning that left‐ and right‐handed helices should exist with almost the same content. In the other solvents, peptide IV showed exciton couplets with a negative peak at longer wavelengths, corresponding to a right‐handed screw sense. From conformational energy calculation and the above 1H‐nmr studies, an N‐ or C‐terminal L ‐Leu residue in the lowest energy left‐handed 310‐helical conformation was found to take an irregular conformation that deviates from a left‐handed helix. The positional effect of the L ‐residue on helical screw sense was discussed based on CD data of peptides IV and of Boc–(L ‐Leu–ΔPhe)n–L ‐Leu–OMe (n = 2 and 3). © 1999 John Wiley & Sons, Inc. Biopoly 49: 551–564, 1999  相似文献   

12.
In order to investigate the role of each amino acid residue in determining the secondary structure of the transmembrane segment of membrane proteins in a lipid bilayer, we made a conformational analysis by CD for lipid-soluble homooligopeptides, benzyloxycarbonyl-(Z-) Aaan-OEt (n = 5-7), composed of Ala, Leu, Val, and Phe, in three media of trifluoroethanol, sodium dodecyl sulfaie micelle, and phospholipid liposomes. The lipid-peptide interaction was also studied through the observation of bilayer phase transition by differential scanning cahrimetry (DSC). The CD studies showed that peptides except for Phe oligomers are present as a mainly random structure in trifluoroethanol, as a mixture of α-helix, β-sheet, β-turn, and /or random in micelles above the critical micellization concentration and preferably as an extended structure of α-helical or β-structure in dipalmitoyl-D,L -α-phosphatidylcholine (DPPC) liposomes of gel state. That the β-structure content of Val oligomers in lipid bilayers is much higher than that in micelles and the oligopeptides of Leu (n = 7) and Ala (n = 6) can take an α-helical structure with one to two turns in lipid bilayers despite their short chain lengths indicates that lipid bilayers can stabilize the extended structure of both α-helical and β-structures of the peptides. The DSC study for bilayer phase transition of DPPC / peptide mixtures showed that the Leu oligomer virtually affects neither the temperature nor the enthalpy of the transition, while Val and Ala oligomers slightly reduce the transition enthalpy without altering the transition temperature. In contrast, the Phe oligomer affects the phase transition in much more complicated manner. The decreasing tendency of the transition enthalpy was more pronounced for the Ala oligomer as compared with the Leu and Val oligomers, which means that the isopropyl group of the side chain has a less perturbing effect on the lipid acyl chain than the methyl group of Ala. © 1995 John Wiley & Sons, Inc.  相似文献   

13.
An apolar synthetic octapeptide, Boc-(Ala-Aib)4-OMe, was crystallized in the triclinic space group P1 with cell dimensions a = 11.558 Å, b = 11.643 Å, c = 9.650 Å, α = 120.220°, β = 107.000°, γ = 90.430°, V = 1055.889 Å3, Z = 1, C34H60O11N8·H2O. The calculated crystal density was 1.217 g/cm3 and the absorption coefficient ? was 6.1. All the intrahelical hydrogen bonds are of the 310 type, but the torsion angles, ? and ψ, of Ala(5) and Ala(7) deviate from the standard values. The distortion of the 310-helix at the C-terminal half is due to accommodation of the bulky Boc group of an adjacent peptide in the nacking. A water molecule is held between the N-terminal of one peptide and the C-terminal of the other. The oxygen atom of water forms hydrogen bonds with N (1) -H and N (2) -H, which are not involved in the intrahelical hydrogen bonds. The hydrogen atoms of water also formed hydrogen bonds with carbonyl oxygens of the adjacent peptide molecule. On the other hand, 1H-nmr analysis revealed that the octapeptide took an α-helical structure in a CD3CN solution. The longer peptides, Boc-(Ala-Aib)6-OMe and Boc-(Ala-Aib)8-OMe, were also shown to take an α-helical structure in a CD3CN solution. An α-helical conformation of the hexadecapeptide in the solid state was suggested by x-ray analysis of the crystalline structure. Thus, the critical length for transition from the 310- to α-helix of Boc-(Ala-Aib)n-OMe is 8. © 1993 John Wiley & Sons, Inc.  相似文献   

14.
Abstract

To assess the minimal peptide length required for the stabilization of the a-helix relative to the 310-helix in Aib-rich peptides, we have solved the X-ray diffraction structures of the terminally blocked sequential hexa- and octapeptides with the general formula -(Aib-L-Ala)n-(n = 3 and 4, respectively). The hexapeptide molecules are completely 310-helical with four 1 ← 4 intramolecular N-H … O=C H-bonds. On the other hand, the octapeptide molecules are essentially α-helical with four 1 ← 5 H-bonds; however, the helix is elongated at the N-terminus, with two 1 ← 4 H-bonds, giving these molecules a mixed α/310-helical character. In both compounds the right-handed screw sense of the helix is dictated by the presence of the Ala residues of L-configuration. This study represents the first experimental proof for a 310 →α-helix conversion in the crystal state induced by peptide backbone lengthening only.  相似文献   

15.
t-Buthyoxycarbonyl-L -alanyl-α-aminiosobutyryl-L -alanyl-α-aminoisobutyryl-α-aminoisobutyric acid methyl ester (t-Boc-L -Ala-Aib-L -Ala-Aib-Aib-OMe), C24H43N5O8, an end-protected pentapeptide with a sequence corresponding to the 6th through the 10th residues in suzukacillin, crystallizes in the orthorhombic space group P212121 with a = 11.671, b = 14.534, c = 17.906 Å and z = 4. The molecule exists as a right-handed 310-helix with a pitch of 6.026 Å. The helix is stabilized by three 4 → 1 hydrogen bonds with the NH groups of Ala(3), Aib(4), and Aib(5) hydrogen bonding to the carbonyl oxygens of t-Boc, Ala(1), and Aib(2), respectively. The helical molecules arrange themselves in a head-to-tail fashion along the a direction in such a way that the NH groups of Ala(1) and Aib(2) hydrogen bond to the carbonyl oxygens of Aib(4) and Aib(5), respectively, of a translationally related molecule. The helical columns thus formed close-pack nearly hexagonally to form the crystal.  相似文献   

16.
The crystal state conformations of three peptides containing the α,α-dialkylated residues. α,α-di-n-propylglycine (Dpg) and α,α-di-n-butylglycine (Dbg), have been established by x-ray diffraction. Boc-Ala-Dpg-Alu-OMe (I) and Boc-Ala-Dbg-Ala-OMe (III) adopt distorted type II β-turn conformations with Ala (1) and Dpg/Dbg (2) as the corner residues. In both peptides the conformational angles at the Dxg residue (I: ? = 66.2°, ψ = 19.3°; III: ? = 66.5°. ψ = 21.1°) deviate appreciably from ideal values for the i + 2 residue in a type II β-turn. In both peptides the observed (N…O) distances between the Boc CO and Ala (3) NH groups are far too long (1: 3.44 Å: III: 3.63 Å) for an intramolecular 4 → 1 hydrogen bond. Boc-Ala-Dpg-Ata-NHMe (II) crystallizes with two independent molecules in the asymmetric unit. Both molecules HA and HB adopt consecutive β-turn (type III-III in HA and type III-I in IIB) or incipient 310-helical structures, stabilized by two intramolecular 4 → 1 hydrogen bonds. In all four molecules the bond angle N-Cα-C′ (τ) at the Dxg residues are ≥ 110°. The observation of conformational angles in the helical region of ?,ψ space at these residues is consistent with theoretical predictions. © 1995 John Wiley & Sons, Inc.  相似文献   

17.
We have recorded high-resolution 13C-nmr spectra of collagen fibrils in the solid state by the cross-polarization–magic-angle-spinning(CP–MAS)method and analyzed the spectra with reference to those of collagenlike polypeptides. We used two kinds of model polypeptides to obtain reference 13C chemical shifts of major amino acid residues of collagen (Gly, Pro, Ala, and Hyp): the 31-helical polypeptides [(Gly)nII, (Pro)nII, (Hyp)n, and (Ala? Gly? Gly)nII], and the triple-helical polypeptides [(Pro? Gly? Pro)n and (Pro? Ala? Gly)n]. Examination of the 13C chemical shifts of these polypeptides, together with our previous data, showed that the 13C chemical shifts of individual amino acid residues are the same, within experimental error (±0.5 ppm), among different polypeptides with different primary sequences, if the conformations are the same. We found that the 13C chemical shifts of Ala residues of the 31-helical (Ala? Gly? Gly)n and triple-helical (Pro? Ala? Gly)n are significantly displaced, compared with those of the α-helix, β-sheet, and silk I form, and can be utilized as excellent probes to examine conformational features of collagen-like polypeptides. Further, the 13C chemical shifts of Gly and Pro residues in the triple-helical polypeptides are substantially displaced from those found in (Gly)nII and (Pro)nII of the 31-helix, reflecting further conformational change from the 31-helix to the supercoiled triple helix. In particular, the 13C chemical shifts of Gly C ? O carbons of the triple-helical polypeptides are substantially displaced upfield (4.1–5.1 ppm), with respect to those of the 31-helical polypeptides. These displacements are interpreted by that Gly C ? O of the former is not involved in NH …? O ? C hydrogen bonds, while this carbon of the latter is linked by these kinds of hydrogen bonds. On the basis of these 13C chemical shifts, as reference data for the collagenlike structure, we were able to assign the 13C-nmr peaks of Gly, Ala, Pro, and Hyp residues of collagen fibrils, which are in good agreement with the values expected from the model polypeptides mentioned above. We also discuss a plausible conformational change of collagen fibrils during denaturation.  相似文献   

18.
The influence of amino acids with contrasting conformational tendencies on the stereochemistry of oligopeptides has been investigated using an octapeptide Boc-Leu-Aib-Val-Gly-Gly-Leu-Aib-Val-OMe, which contains two helix-promoting Aib residues and a central helix-destabilizing Gly-Gly segment. Single crystal x-ray diffraction studies reveal that a 3 10-helix is formed up to the penultimate Aib residue, at which point there is a helix reversal in the backbone, reminiscent of a C-terminal 6 → I hydrogen bond. The curious feature in the crystal is the solvation of the possible 6 → 1 bond by a CH3OH molecule, where the OH is inserted between O(3) and N(8) and participates in hydrogen bonds with both. The cell parameters are as follows: space group P212121, a = 10.649(4) Å, b = 15.694(5) Å, c = 30.181(8) Å, R = 6.7% for 3427 data (| F0| > 3σF) observed to 0.9 Å. Nuclear magnetic resonance studies in CDCl3 using NH group solvent accessibility and nuclear Overhauser effects as probes are consistent with a 3 10-helical conformation. In contrast, in (CD3)2SO, unfolding of the central segment results in a multiple β-turn structure, with β-turn conformations populated at residues 1–2, 3–4, and 6–7. CD studies in methanol-2,2,2-trifluoroethanol (TFE) mixtures also provide evidence for a solvent-dependent structural transition. Helical conformations are populated in TFE, while type II β-turn structures are favored in methanol. © 1996 John Wiley & Sons, Inc.  相似文献   

19.
The specificities of acid proteinases from Aspergillus niger, Aspergillus saitoi, Rhizopus chinensis, Mucor miehei, Rhodotorula glutinis, and Cladosporium sp., and that of swine pepsin, were determined and compared with ability of the enzymes to activate trypsinogen. Various oligopeptides containing l-lysine, Z-Lys-X-Ala, Z-Lys-(Ala)m, Z-Lys-Leu-(Ala)2, and Z-(Ala)n-Lys-(Ala)3 (X = various amino acid residues, m = 1–4, n = 1–2) were used as substrates. Of the enzymes which are able to activate trypsinogen, most split these peptides at the peptide bond formed by the carbonyl group of l-lysine. For the peptides to be susceptible to the enzymes it was essential that the chain extended for two or three amino acid residues on the C-terminal side of the catalytic point, and that a bulky or hydrophobic amino acid residue formed the imino-side of the splitting point. The rate of hydrolysis was markedly accelerated by elongation of the peptide chain with l-alanine on the N-terminal side of the catalytic point. Thus, of the substrates used, Z-(Ala)2-Lys-(Ala)3 was the most susceptible to the microbial acid proteinases possessing trypsinogen activating ability. On the other hand, M. miehei enzyme and pepsin, which do not activate trypsinogen, showed very little peptidase activity on the peptides.  相似文献   

20.
The crystal-state preferred conformations of six Nα-blocked pentapeptide esters, each containing four helicogenic, achiral α-aminoisobutyric acid (Aib) residues followed by one chiral L -valine (L -Val) or Cα-methyl-L -valine [(αMe)Val] residue at the C-terminus, have been assessed by x-ray diffraction analysis. In all of the compounds the  (Aib)4 sequence is folded in a regular 310-helical conformation. In the four pentapeptides characterized by the L -(αMe)Val residue two conformationally distinct molecules occur in the asymmetric unit. Conversely, only one molecule is observed in the asymmetric unit of two pentapeptides with the C-terminal L -Val residue. In the L -Val based peptides the helical screw sense of the  (Aib)4 sequence is right-handed, whereas in the L  (αMe)Val analogues both right- and left-handed helical screw senses concomitantly occur in the two crystallographically independent molecules. © 1998 John Wiley & Sons, Inc. Biopoly 46: 433–443, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号