首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary 1. Evidence is reviewed which shows that a sexually dimorphic nucleus located in the dorsomedial portion of the male ferret's preoptic area/anterior hypothalamus (POA/AH), called the male nucleus of the POA/AH (Mn-POA/AH), develops during fetal life in response to the action of estradiol, which is formed directly in the nervous system from circulating testosterone over the final quarter of a 41-day gestation.2. Results are summarized which establish that neurons which make up the Mn-POA/AH are born prior to the critical period of estradiol's action in the male brain. Other data show that some radial glial processes, visualized immunocytochemically using antibodies against GFAP, emanate from proliferative zones at the base of the lateral ventricles in a dorsal-ventral orientation, whereas other glial processes emanate laterally from proliferative zones lining the third ventricle.3. We suggest that at least some neurons which constitute the dorsomedial POA/AH are born in proliferative zones surrounding the lateral ventricles, raising the question of whether estradiol acts in developing males to influence the migration of these neurons along radial glial guides into the Mn-POA/AH.4. Finally, evidence is summarized showing that excitotoxic lesions of the dorsomedial POA/AH enhance males' preference to approach and interact with another sexually active male, as opposed to an estrous female, when adult subjects are castrated and treated with estradiol benzoate. These data suggest that the sexually dimorphic Mn-POA/AH is an essential part of a CNS circuit which determines heterosexual partner preference in the male ferret.  相似文献   

2.
A sexually dimorphic male nucleus (MN) of the preoptic area/anterior hypothalamus (POA/AH), comprising large, estradiol-receptor containing neurons, is formed in male ferrets due to the action of estradiol, derived from the neural aromatization of circulating testosterone, during the last quarter of a 41-day gestation. Two experiments were conducted to compare the birthdates and the migration pattern of cells into the sexually dimorphic portion of the dorsomedial POA/AH as well as the nondimorphic ventral nucleus (VN) of the POA/AH of males and females. In experiment 1 the thymidine analog, bromodeoxyuridine (BrdU), was injected into the amniotic sacs of fetuses of different mothers between embryonic (E) days 18 and 30. Kits from all mothers were sacrificed on E38, and brains were processed to localize BrdU immunoreactivity (IR) for determining the birthdates of neurons in the POA/AH. Cells in the MN-POA/AH of males and in a comparable region of females were born between E22 and E28; cells in the nondimorphic VN-POA/AH of both sexes were born between these same ages. These results suggest that cells in the sexually dimorphic as well as the nondimorphic subdivision of the ferret POA/AH are born during the same embryonic period. This is well before the ages (E30–E41) when administering testosterone to females can stimulate, and blocking androgen aromatization in males can inhibit, MN-POA/AH differentiation. In experiment 2 BrdU was injected on E24, and kits from different litters were perfused on E30, E34, or E38. Brains were processed for BrdU-IR as well as glial fibrillary acidic protein (GFAP), which served as a marker for radial glial processes. The orientation of radial glial processes in fetal brains of both sexes suggested that cells migrate into the dorsomedial POA/AH from proliferative zones lining the lateral as well as the third ventricles. Quantitative, computer-assisted image analysis of BrdU-IR in groups of male and female brains supported this hypothesis. There were no significant sex differences in the distribution of BrdU-IR over the three ages studied, suggesting that formation of the MN-POA/AH in males cannot be attributed to an effect of estradiol on the migration of those cells born on E24 into this sexually dimorphic structure. Finally, total BrdU-IR did not change significantly in the POA/AH of male and female kits killed at E30, E34, or E38 while the area of the POA/AH increased more than 2.5-fold over this period, suggesting that few of the POA/AH cells born on E24 die during this period in either sex. In the absence of evidence that formation of the male ferret's MN-POA/AH depends on steroid-induced changes in neurogenesis, cell migration, or death, we suggest that the specification of a particular neuronal phenotype (e.g., large somal size; capacity to produce some undetermined neurotransmitter or neuropeptide) may be responsible. © 1996 John Wiley & Sons, Inc.  相似文献   

3.
A sexually dimorphic nucleus exists in the dorsal region of the ferret preoptic/anterior hypothalamic area (POA/AH), and is called the male nucleus of the POA/AH (MN-POA/AH) because it is found only in males. Development of the MN-POA/AH was studied in male ferrets, and for comparison a sexually nondimorphic ventral POA/AH nucleus was studied in both sexes. The MN-POA/AH was conspicuous in males as early as embryonic day 37 (E37) of a 41-day gestation, and its volume increased until postnatal day 56 (P56). No nucleus was present in the dorsal POA/AH of females at any age. The densities and average somal areas of cells in the dorsal POA/AH were similar in males and females at E33, before the MN-POA/AH could be visualized. However, at E37 and E41 dorsal cells were greater in density and/or somal area in males than in females, accounting for the appearance of a nucleus in males at these ages. To insure that the dorsal POA/AH nucleus seen in males at E37 and E41 was the presumptive MN-POA/AH present in adult males, pregnant ferrets were given progesterone and either implanted subcutaneously (s.c.) with testosterone (T) or ovariectomized and implanted s.c. with the aromatase inhibitor, 1,4,6-androstatriene-3,17-dione (ATD), on day 30 of gestation. As predicted from previous studies in which subjects were sacrificed in adulthood, formation of a dorsal POA/AH nucleus was promoted in female ferrets by T, and blocked in males by maternal ovariectomy and ATD treatment for animals sacrificed at E41. Much evidence suggests that behavioral sexual differentiation is accomplished in the male ferret between age E28 and P20. The MN-POA/AH is present and potentially functional in males during a considerable portion of this perinatal period.  相似文献   

4.
The preoptic area/anterior hypothalamus (POA/AH) is a site where hormones dramatically influence development. The POA/AH is comprised of multiple subgroups, but little is known about the derivation of these subgroups during development. Results from several laboratories suggest that some cells in the POA/AH originate from progenitor cells in other regions of the developing nervous system. We are exploring pathways for migration in the developing POA/AH in two ways. First, we are examining the distribution of radial glial processes as potential migratory guides using immunocytochemistry. We have identified a transient pattern of radial glial processes from the lateral ventricles to the pial surface at the base of the POA/AH. Additionally, the expression of a molecule in radial glial processes originating in the third ventricle was decreased by prenatal treatment with testosterone. Second, we are utilizing time-lapse video microscopy in vitro to assess the extent and direction of movements of fluorescent dye-labeled cells at different ages in brain slice preparations from the POA/AH of developing rats. Data from these studies indicate that cell migration in the POA/AH includes movements along dorsal-ventral routes and from lateral to medial positions, in addition to the predicted medial to lateral pathway away from the third ventricle. Several researchers have examined effects of gonadal steroids on neurite outgrowth, cell differentiation, cell death, and synaptogenesis. The determination of cell position, however, may be a key event influenced by gonadal steroids earlier in development. The characterization of migratory pathways that contribute to permanent changes in brain structure and ultimately function is essential for unraveling the process of sexual differentiation.  相似文献   

5.
A sexually dimorphic male nucleus (MN) is present in Nissl-stained sections through the dorsal (d) preoptic area/anterior hypothalamus (POA/AH) of male ferrets. The MN-POA/AH is composed of a cluster of large cells which is organized in males by the action of estradiol, formed via the neural aromatization of circulating testosterone (T), during the last quarter of a 41-day gestation. Several recent studies using rodent species have raised the possibility that the hormone-induced masculinization of POA/AH morphology is mediated at least in part by a perinatal modulation of cell death. We asked whether a perinatal reduction in cell death contributes to the differentiation of the MN-POA/AH in the male ferret, which is a carnivore species. The appearance of internucleosomal DNA fragmentation, detected by in situ end labeling (ISEL) using the ApopTag™ kit (Oncor Corp.) and of pyknotic cell nuclei in Nissl-stained sections were used to estimate the occurrence of cell death. Male and female ferret kits were killed at four different ages spanning the perinatal period during which the MN-POA/AH is organized and assumes an adult phenotype. A peak density of dying cells was present in both sexes at postnatal day (P) 2, which is nearly 1 week after the age, embryonic day (E) 37, when the MN-POA/AH is first visible in male ferrets using Nissl stains. The density of cells in the sexually dimorphic dPOA/AH which were either ISEL-positive or pyknotic was similar in males and females on E34, as well as on P2, 10, and 20. In the nondimorphic ventral POA/AH, the highest density of dying cells was present in both sexes at E34, and there were significantly more ISEL-positive cells present in males than females at this particular age. In contrast to previous studies using rodents, our results suggest that in fetal male ferrets a modulation of the incidence of cell death contributes little to estradiol's organizational action in the dPOA/AH. © 1998 John Wiley & Sons, Inc. J Neurobiol 34: 242–252, 1998  相似文献   

6.
The preoptic area/anterior hypothalamus (POA/AH) sits as a boundary region rostral to the classical diencephalic hypothalamus and ventral to the telencephalic septal region. Numerous studies have pointed to the region's importance for sex‐dependent functions. Previous studies suggested that migratory guidance cues within this region might be particularly unique in their diversity. To better understand the early development and differentiation of the POA/AH, cytoarchitectural, birthdate, immunocytochemical, and cell migration studies were conducted in vivo and in vitro using embryonic C57BL/6J mice. A medial preoptic nucleus became discernible using Nissl stain in males and females between embryonic days (E) E15 and E17. Cells containing immunoreactive estrogen receptor‐α were detected in the POA/AH by E13, and increased in number with age in both sexes. From E15 to E17, examination of the radial glial fiber pattern by immunocytochemistry confirmed the presence of dual orientations for migratory guidance ventral to the anterior commissure (medial‐lateral and dorsal‐ventral) and uniform orientation more caudally (medial‐lateral). Video microscopy studies followed the migration of DiI‐labeled cells in coronal 250‐μm brain slices from E15 mice maintained in serum‐free media for 1–3 days. Analyses showed significant migration along a dorsal‐ventral orientation in addition to medial‐lateral. The video analyses showed significantly more medial‐lateral migration in males than females in the caudal POA/AH. In vivo, changes in the distribution of cells labeled by the mitotic indicator bromodeoxyuridine (BrdU) suggested their progressive migration through the POA/AH. BrdU analyses also indicated significant movement from dorsal to ventral regions ventral to the anterior commissure. The significant dorsal‐ventral migration of cells in the POA/AH provides additional support for the notion that the region integrates developmental information from both telencephalic and diencephalic compartments. The sex difference in the orientation of migration of cells in the caudal POA/AH suggests one locus for the influence of gonadal steroids in the embryonic mouse forebrain. © 1999 John Wiley & Sons, Inc. J Neurobiol 41: 252–266, 1999  相似文献   

7.
Poluch S  Juliano SL 《PloS one》2010,5(10):e13709
Radial glial cells play an essential role during corticogenesis through their function as neural precursors and guides of neuronal migration. Both reelin and neuregulin1 (NRG1) maintain the radial glial scaffold; they also induce expression of Brain Lipid Binding Protein (BLBP), a well known marker of radial glia. Although radial glia in normal ferrets express both vimentin and BLBP, this coexpression diverges at P3; vimentin is expressed in the radial glial processes, while BLBP appears in cells detached from the ventricular zone. Our lab developed a model of cortical dysplasia in the ferret, resulting in impaired migration of neurons into the cortical plate and disordered radial glia. This occurs after exposure to the antimitotic methylazoxymethanol (MAM) on the 24th day of development (E24). Ferrets treated with MAM on E24 result in an overall decrease of BLBP expression; radial glia that continue to express BLBP, however, show only mild disruption compared with the strongly disrupted vimentin expressing radial glia. When E24 MAM-treated organotypic slices are exposed to reelin or NRG1, the severely disrupted vimentin+ radial glial processes are repaired but the slightly disordered BLBP+ processes are not. The realignment of vimentin+ processes was linked with an increase of their BLBP expression. BLBP expressing radial glia are distinguished by being both less affected by MAM treatment and by attempts at repair. We further investigated the effects induced by reelin and found that signaling was mediated via VLDLR/Dab1/Pi3K activation while NRG1 signaling was mediated via erbB3/erbB4/Pi3K. We then tested whether radial glial repair correlated with improved neuronal migration. Repairing the radial glial scaffold is not sufficient to restore neuronal migration; although reelin improves migration of neurons toward the cortical plate signaling through ApoER2/Dab1/PI3K activation, NRG1 does not.  相似文献   

8.
The preoptic area/anterior hypothalamus (POA/AH) sits as a boundary region rostral to the classical diencephalic hypothalamus and ventral to the telencephalic septal region. Numerous studies have pointed to the region's importance for sex-dependent functions. Previous studies suggested that migratory guidance cues within this region might be particularly unique in their diversity. To better understand the early development and differentiation of the POA/AH, cytoarchitectural, birthdate, immunocytochemical, and cell migration studies were conducted in vivo and in vitro using embryonic C57BL/6J mice. A medial preoptic nucleus became discernible using Nissl stain in males and females between embryonic days (E) E15 and E17. Cells containing immunoreactive estrogen receptor-alpha were detected in the POA/AH by E13, and increased in number with age in both sexes. From E15 to E17, examination of the radial glial fiber pattern by immunocytochemistry confirmed the presence of dual orientations for migratory guidance ventral to the anterior commissure (medial-lateral and dorsal-ventral) and uniform orientation more caudally (medial-lateral). Video microscopy studies followed the migration of DiI-labeled cells in coronal 250-microm brain slices from E15 mice maintained in serum-free media for 1-3 days. Analyses showed significant migration along a dorsal-ventral orientation in addition to medial-lateral. The video analyses showed significantly more medial-lateral migration in males than females in the caudal POA/AH. In vivo, changes in the distribution of cells labeled by the mitotic indicator bromodeoxyuridine (BrdU) suggested their progressive migration through the POA/AH. BrdU analyses also indicated significant movement from dorsal to ventral regions ventral to the anterior commissure. The significant dorsal-ventral migration of cells in the POA/AH provides additional support for the notion that the region integrates developmental information from both telencephalic and diencephalic compartments. The sex difference in the orientation of migration of cells in the caudal POA/AH suggests one locus for the influence of gonadal steroids in the embryonic mouse forebrain.  相似文献   

9.
The displacement of immature neurons from their place of origin in the germinal epithelium toward their adult positions in the nervous system appears to involve migratory pathways or guides. While the importance of radial glial fibers in this process has long been recognized, data from recent investigations have suggested that other mechanisms might also play a role in directing the movement of young neurons. We have labeled autonomic preganglionic cells by microinjections of horseradish peroxidase (HRP) into the sympathetic chain ganglia of embryonic rats in order to study the migration and differentiation of these spinal cord neurons. Our results, in conjunction with previous observations, suggest that the migration pattern of preganglionic neurons can be divided into three distinct phases. In the first phase, the autonomic motor neurons arise in the ventral ventricular zone and migrate radially into the ventral horn of the developing spinal cord, where, together with somatic motor neurons, they form a single, primitive motor column (Phelps P. E., Barber R. P., and Vaughn J. E. (1991). J. Comp. Neurol. 307:77–86). During the second phase, the autonomic motor neurons separate from the somatic motor neurons and are displaced dorsally toward the intermediate spinal cord. When the preganglionic neurons reach the intermediolateral (IML) region, they become progressively more multipolar, and many of them undergo a change in alignment, from a dorsoventral to a mediolateral orientation. In the third phase of autonomic motor neuron development, some of these cells are displaced medially, and occupy sites between the IML and central canal. The primary and tertiary movements of the preganglionic neurons are in alignment with radial glial processes in the embryonic spinal cord, an arrangement that is consistent with a hypothesis that glial elements might guide autonomic motor neurons during these periods of development. In contrast, during the second phase, the dorsal translocation of preganglionic neurons occurs in an orientation perpendicular to radial glial fibers, indicating that glial elements are not involved in the secondary migration of these cells. The results of previous investigations have provided evidence that, in addition to glial processes, axonal pathways might provide a substrate for neuronal migration. Logically, therefore, it is possible that the secondary dorsolateral translocation of autonomic preganglionic neurons could be directed along early forming circumferential axons of spinal association interneurons, and this hypothesis is supported by the fact that such fibers are appropriately arrayed in both developmental time and space to guide this movement.  相似文献   

10.
The displacement of immature neurons from their place of origin in the germinal epithelium toward their adult positions in the nervous system appears to involve migratory pathways or guides. While the importance of radial glial fibers in this process has long been recognized, data from recent investigations have suggested that other mechanisms might also play a role in directing the movement of young neurons. We have labeled autonomic preganglionic cells by microinjections of horseradish peroxidase (HRP) into the sympathetic chain ganglia of embryonic rats in order to study the migration and differentiation of these spinal cord neurons. Our results, in conjunction with previous observations, suggest that the migration pattern of preganglionic neurons can be divided into three distinct phases. In the first phase, the autonomic motor neurons arise in the ventral ventricular zone and migrate radially into the ventral horn of the developing spinal cord, where, together with somatic motor neurons, they form a single, primitive motor column (Phelps P. E., Barber R. P., and Vaughn J. E. (1991). J. Comp. Neurol. 307:77-86). During the second phase, the autonomic motor neurons separate from the somatic motor neurons and are displaced dorsally toward the intermediate spinal cord. When the preganglionic neurons reach the intermediolateral (IML) region, they become progressively more multipolar, and many of them undergo a change in alignment, from a dorsoventral to a mediolateral orientation. In the third phase of autonomic motor neuron development, some of these cells are displaced medially, and occupy sites between the IML and central canal. The primary and tertiary movements of the preganglionic neurons are in alignment with radial glial processes in the embryonic spinal cord, an arrangement that is consistent with a hypothesis that glial elements might guide autonomic motor neurons during these periods of development. In contrast, during the second phase, the dorsal translocation of preganglionic neurons occurs in an orientation perpendicular to radial glial fibers, indicating that glial elements are not involved in the secondary migration of these cells. The results of previous investigations have provided evidence that, in addition to glial processes, axonal pathways might provide a substrate for neuronal migration. Logically, therefore, it is possible that the secondary dorsolateral translocation of autonomic preganglionic neurons could be directed along early forming circumferential axons of spinal association interneurons, and this hypothesis is supported by the fact that such fibers are appropriately arrayed in both developmental time and space to guide this movement.  相似文献   

11.
Numerous functions related to neuronal migration are linked to the glycoprotein reelin. Reelin also elongates radial glia, which are disrupted in mutant reeler mice. Our lab developed a model of cortical dysplasia in ferrets that shares features with the reeler mouse, including impaired migration of neurons into the cerebral cortex and disrupted radial glia. Explants of normal ferret cortex in coculture with dysplastic ferret cortex restore the deficits in this model. To determine if reelin is integral to the repair, we used explants of P0 mouse cortex either of the wild type (WT) or heterozygous (het) for the reelin gene, as well as P0 reeler cortex (not containing reelin), in coculture with organotypic cultures of dysplastic ferret cortex. This arrangement revealed that all types of mouse cortical explants (WT, het, reeler) elongated radial glia in ferret cortical dysplasia, indicating that reelin is not required for proper radial glial morphology. Migration of cells into ferret neocortex, however, did not improve with explants of reeler cortex, but was almost normal after pairing with WT or het explants. We also placed an exogenous source of reelin in ferret cultures at the pial surface to reveal that migrating cells move toward the reelin source in dysplastic cortex; radial glia in these cultures were also improved toward normal. Our results demonstrate that the normotopic position of reelin is important for proper neuronal positioning, and that reelin is capable of elongating radial glial cells but is not the only radialization factor.  相似文献   

12.
Differential adhesion between migrating neurons and transient radial glial fibers enables the deployment of neurons into appropriate layers in the developing cerebral cortex. The identity of radial glial signals that regulate the termination of migration remains unclear. Here, we identified a radial glial surface antigen, SPARC (secreted protein acidic and rich in cysteine)-like 1, distributed predominantly in radial glial fibers passing through the upper strata of the cortical plate (CP) where neurons end their migration. Neuronal migration and adhesion assays indicate that SPARC-like 1 functions to terminate neuronal migration by reducing the adhesivity of neurons at the top of the CP. Cortical neurons fail to achieve appropriate positions in the absence of SPARC-like 1 function in vivo. Together, these data suggest that antiadhesive signaling via SPARC-like 1 on radial glial cell surfaces may enable neurons to recognize the end of migration in the developing cerebral cortex.  相似文献   

13.
Previous research showed that ferrets of both sexes rely on the perception of conspecifics' body odors to identify and motivate approach towards opposite-sex mating partners, and exposure to male body odors stimulated Fos expression in an olfactory projection circuit of female, but not male, ferrets that terminates in the ventromedial hypothalamic nucleus (VMH). We asked whether the female-typical preference of ferrets to approach male as opposed to female body odors in Y-maze tests would be disrupted by VMH lesions. Sexually experienced female ferrets were ovo-hysterectomized prior to receiving bilateral electrolytic lesions of the VMH, the preoptic area/anterior hypothalamus (POA/AH) or a sham operation. Subsequently, while receiving estradiol benzoate, females that received either complete or partial bilateral lesions of the VMH approached volatile odors from an anesthetized male on significantly fewer trials than females given POA/AH lesions or a sham operation. Both groups of ferrets with VMH lesion damage reliably discriminated between volatile anal scents as well as urinary odors from the 2 sexes in home cage habituation/dishabituation tests, suggesting that their odor-based sex discrimination remained intact. Females with complete bilateral VMH lesions showed significantly lower acceptance of neck gripping from a stimulus male (receptivity) and more aggression towards the male than all other groups of female subjects. Estrogen-sensitive neurons in the VMH appear to play a central role in female-typical neural processing of odor inputs leading to a preference to seek out a male sex partner, in addition to facilitating females' sexual receptivity.  相似文献   

14.
Reelin is a positional signal for the lamination of dentate granule cells   总被引:7,自引:0,他引:7  
Reelin is required for the proper positioning of neurons in the cerebral cortex. In the reeler mutant lacking reelin, the granule cells of the dentate gyrus fail to form a regular, densely packed cell layer. Recent evidence suggests that this defect is due to the malformation of radial glial processes required for granule cell migration. Here, we show that recombinant reelin in the medium significantly increases the length of GFAP-positive radial glial fibers in slice cultures of reeler hippocampus, but does not rescue either radial glial fiber orientation or granule cell lamination. However, rescue of radial glial fiber orientation and granule cell lamination was achieved when reelin was present in the normotopic position provided by wild-type co-culture, an effect that is blocked by the CR-50 antibody against reelin. These results indicate a dual function of reelin in the dentate gyrus, as a differentiation factor for radial glial cells and as a positional cue for radial fiber orientation and granule cell migration.  相似文献   

15.
The preoptic/anterior hypothalamic area (POA/AH) is one of the most sexually dimorphic areas of the vertebrate brain and plays a pivotal role in regulating male sexual behavior. Vinclozolin is a fungicide thought to be an environmental antiandrogen, which disrupts masculine sexual behavior when administered to rabbits during development. In this study, we examined several characteristics of the rabbit POA/AH for sexual dimorphism and endocrine disruption by vinclozolin. Pregnant rabbits were dosed orally with vinclozolin (10 mg/kg body weight) or carrot paste vehicle once daily for 6 wk beginning at midgestation and continuing through nursing until Postpartum Week 4. At 6 wk, offspring were perfused with 4% paraformaldehyde and brains processed for immunocytochemical localization of tyrosine hydroxylase, calbindin, gonadotropin-releasing hormone (GnRH), or Nissl stain. There were significant sex differences in the distribution of calbindin in the POA/AH and the size of cells in the dorsal POA/AH (values greater in females than in males), but not in the number or distribution of tyrosine hydroxylase or GnRH neurons. In both sexes, exposure to vinclozolin significantly increased calbindin expression in the ventral POA/AH and significantly decreased number of GnRH neurons selectively in the region of the organum vasculosum of the lamina terminalis (OVLT) but not more caudally in the POA/AH. This is the first documentation of a sexually dimorphic region in the rabbit brain, and further supports the use of this species as a model for studying the influence of vinclozolin on reproductive development with potential application to human systems.  相似文献   

16.
In T-maze tests given to gonadectomized ferrets treated daily with estradiol benzoate (EB), females consistently prefer to approach and interact sexually with a stud male whereas male subjects, on average, prefer an estrous female. In the present experiment this sexually allomorphic pattern of partner preference was changed in males given lesions of the medial preoptic area/anterior hypothalamus (mPOA/AH). Electrolytic lesions, which caused extensive bilateral damage to the mPOA/AH, including the sexually dimorphic male nucleus (MN) of the POA/AH, led males to shift their mean preference away from the estrous female to the stud male. Their postoperative profile of partner preference more closely resembled that of sham-operated females than that of sham-operated males or of males which sustained either partial or minimal bilateral damage to the mPOA/AH so as to spare the MN-POA/AH in one or both hemispheres. Males with extensive bilateral mPOA/AH lesions, like sham-operated females, showed an even stronger preference to approach the stud male during T-maze tests in which the subjects could smell, see, and hear the stimulus animals without physically interacting with them. After receiving testosterone propionate, male ferrets with either extensive or partial lesions of the mPOA/AH showed significant deficits in neck gripping and mounting performance in tests with either female or male stimulus animals which were sexually receptive after gonadectomy and EB treatment. The present results, coupled with those of a previous study using excitotoxic mPOA/AH lesions, suggest that the male-typical profile of preference for an estrous female depends on the functional integrity of sexually dimorphic mPOA/AH neurons and the reward engendered by coital interaction with such a female. When these neurons either are destroyed experimentally (as in male ferrets with extensive bilateral mPOA/AH lesions) or are absent (as in sham-operated females), subjects are attracted by distal (possibly chemosensory) incentive cues from a stud male.  相似文献   

17.
In the human brain, the transformation of radial glial cells (RGC) into astrocytes has been studied only rarely. In this work, we were interested in studying the morphologic aspects underlying this transformation during the fetal/perinatal period, particularly emphasizing the region-specific glial fiber anatomy in the medial cortex. We have used carbocyanine dyes (DiI/DiA) to identify the RGC transitional forms and glial fiber morphology. Immunocytochemical markers such as vimentin and glial fibrillary acidic protein (GFAP) were also employed to label the radial cells of glial lineage and to reveal the early pattern of astrocyte distribution. Neuronal markers such as neuronal-specific nuclear protein (NeuN) and microtubule-associated protein (MAP-2) were employed to discern whether or not these radial cells could, in fact, be neurons or neuronal precursors. The main findings concern the beginning of RGC transformation showing loss of the ventricular fixation in most cases, followed by transitional figures and the appearance of mature astrocytes. In addition, diverse fiber morphology related to depth within the cortical mantle was clearly demonstrated. We concluded that during the fetal/perinatal period the cerebral cortex is undergoing the final stages of radial neuronal migration, followed by involution of RGC ventricular processes and transformation into astrocytes. None of the transitional or other radial glia were positive for neuronal markers. Furthermore, the differential morphology of RGC fibers according to depth suggests that factors may act locally in the subplate and could have a role in the process of cortical RGC transformation and astrocyte localization. The early pattern of astrocyte distribution is bilaminar, sparing the cortical plate. Few astrocytes (GFAP+) in the upper band could be found with radial processes at anytime. This suggests that astrocytes in the marginal zone could be derived from different precursors than those that differentiate from RGCs during this period.  相似文献   

18.
In the human brain, the transformation of radial glial cells (RGC) into astrocytes has been studied only rarely. In this work, we were interested in studying the morphologic aspects underlying this transformation during the fetal/perinatal period, particularly emphasizing the region‐specific glial fiber anatomy in the medial cortex. We have used carbocyanine dyes (DiI/DiA) to identify the RGC transitional forms and glial fiber morphology. Immunocytochemical markers such as vimentin and glial fibrillary acidic protein (GFAP) were also employed to label the radial cells of glial lineage and to reveal the early pattern of astrocyte distribution. Neuronal markers such as neuronal‐specific nuclear protein (NeuN) and microtubule‐associated protein (MAP‐2) were employed to discern whether or not these radial cells could, in fact, be neurons or neuronal precursors. The main findings concern the beginning of RGC transformation showing loss of the ventricular fixation in most cases, followed by transitional figures and the appearance of mature astrocytes. In addition, diverse fiber morphology related to depth within the cortical mantle was clearly demonstrated. We concluded that during the fetal/perinatal period the cerebral cortex is undergoing the final stages of radial neuronal migration, followed by involution of RGC ventricular processes and transformation into astrocytes. None of the transitional or other radial glia were positive for neuronal markers. Furthermore, the differential morphology of RGC fibers according to depth suggests that factors may act locally in the subplate and could have a role in the process of cortical RGC transformation and astrocyte localization. The early pattern of astrocyte distribution is bilaminar, sparing the cortical plate. Few astrocytes (GFAP+) in the upper band could be found with radial processes at anytime. This suggests that astrocytes in the marginal zone could be derived from different precursors than those that differentiate from RGCs during this period. © 2003 Wiley Periodicals, Inc. J Neurobiol 55: 288–298, 2003  相似文献   

19.
Deltamethrin (DLT; 0.7mg/kg/body wt/day, i.p., dissolved in propylene glycol) administration during postnatal days 913 in Albino rat pups, resulted in a delayed appearance of radial glial fibers, that guide the migration of granule cells. Moreover, the radial glial fibers in the DLT-treated pups were disorganized, hypertrophied and heavily stained. Thus, it is being proposed that although after exposure to DLT the neuronal proliferation occurs at normal rate, the neuronal migration along the stumpy and crumpled radial fibers hamper the journey of the healthy neurons to their proper destination.  相似文献   

20.
At thoracic and lumbar levels the spinal dorsal gray of young specimens of the turtle Chrysemys d'orbigny consists of a cell-free neuropil and an aggregation of perikarya termed here the lateral column of the dorsal horn (LCDH). Nerve cell clusters also occur in the dorsal commissure. The main neuropil area can be divided into a thin superficial layer containing some myelinated fibers (neuropil area Ib) and a compact core composed of unmyelinated axon terminals, dendritic branches, and thin glial processes (neuropil area II). A looser neuropil area is located at the horn base (neuropil area III). The so-called marginal zone of de Lange represents a fourth synaptic field termed here neuropil area Ia. The LCDH consists of neurons of different size and shape. Two peculiar nerve cell types have been recognized in the dorsal horn: giant and bitufted neurons. The former exhibits a large dendritic arbor, which after passing through neuropil areas II and Ib projects into neuropil area Ia and the adjacent white matter. Most frequently Golgi-stained giant neurons have perikarya and dendritic domains on the same side (ipsilateral giant neurons). There are also heterolateral giant neurons whose dendritic branches invade the opposite horn. Bitufted neurons are characterized by the presence of two main dendritic shafts connecting neuropil area II of both dorsal horns. At neuropil levels the major dendritic branches ramify profusely giving rise to short tortuous terminal processes. Perikarya of bitufted neurons occur in the dorsal commissure. The LCDH also contains many small and medium-sized neurons. These are oriented in two main directions: parallel or radial with respect to the dorsal horn surface. The population of horizontally oriented neurons comprises two subtypes termed here alpha and beta. Radially oriented neurons are pleomorphic, defying precise, unequivocal classification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号