首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In recent years various examples of highly stable two-residue hairpin loops (miniloops) in DNA have been encountered. As the detailed structure and stability of miniloops appear to be determined not only by the nature and sequence of the two bases in the loop, but also by the closing base pair, it is desirable to carry out in-depth studies of especially designed small model DNA compounds. Therefore, a circular DNA dumbbell-like molecule is tailored to consist of a stem of three Watson–Crick base pairs, flanked on each side by a minihairpin loop. The resulting circular DNA decanter 5′-d〈pCGC- TT-GCG- TT〉 -3′ ( I ) is studied in solution by means of nmr spectroscope. At a temperature of 269 K the molecule occurs in a 50/50 mixture of two dumbbell structures (denoted L2L2 and L2L4). L2L2 contains three Watson–Crick C-G base pairs and two two-residue loops (H2-family type) in opposite parts of the molecule. On raising the temperature from 269 to 314 K. The L2L4 conformer becomes increasingly dominant (95% at 314 K). This conformer has a partially disrupted closing G-C base pair in the 5′-GTTC-3′ loop with only one remaining solvent-accessible hydrogen bond between NHα of the cytosine C(1) and O6 of the guanine G(8), whereas the opposite 5′-CTTG-3′ loop remains stable. The disruption of the C(1)-G(8) base pair in the L2L4 form is correlated with the presence of a syn orientation for the C(1) base at the 5′-3′ loop-stem junction in the 5′-GTTC-3′ loop. The two conformers. L2L2 and L2L4, occur in slow equilibrium (2–20 s?1). Moderate line broadening of specific 1H, 13C, and 31P resonances of residues C(1), G(8), T(9), and T(10) at low temperatures, due to chemical exchange between L2L2 and L2L4, show that the interconversion from an anti to syn conformer in residue C(1) has a small local effect on the structure of the dumbbell. T1 relaxation measurements, chemical-shift considerations, and complete hand-shape calculations of the exchange process of the G(8) imino proton reveal a possibility for the existence of multiconformational slates in the antisyn equilibrium. © 1995 John Wiley & Sons, Inc.  相似文献   

2.
Abstract

The circular DNA decamer 5′-d<pCGC-TT-GCG-TT>3′ is studied in solution by means of NMR spectroscopy. At low temperature the molecule adopts a dumbbell structure with three Watson-Crick C-G base pairs and two two-residue loops in opposite parts of the molecule. On raising the temperature another conformer appears, in which the closing C-G base pair in the 5′-GTTC-3′ loop is disrupted, whereas the opposite 5′-CTTG-3′ loop remains stable. The two conformers are in slow equilibrium over a limited temperature range.  相似文献   

3.
Effects of base sequence on the loop folding in DNA hairpins   总被引:23,自引:0,他引:23  
High-resolution NMR and UV-melting experiments have been used to study the hairpin formation of partly self-complementary DNA fragments in an attempt to derive rules that describe the folding in these molecules. Earlier experiments on the hexadecanucleotide d(ATCCTA-TTTT-TAGGAT) had indicated that within the loop of four thymidines a wobble T-T pair is formed (Blommers et al., 1987). In the present paper it is shown that if the first and the last thymines of the intervening sequence are replaced by complementary bases, sometimes base pairs can be formed. Thus for the intervening sequences -CTTG- and -TTTA- with the pyrimidine in the 5'-position and the purine in the 3'-position, a base pair is formed leading to a loop consisting of two residues. For the intervening sequences -GTTC- and -ATTT- with the purine in the 5'-position and the pyrimidine in the 3'-position, this turns out not to be the case. It was found that it made no difference when the four-membered sequence was closed by a G-C base pair or an A-T base pair. Replacement of the two central thymidine residues by the more bulky adenine residues limits the hairpin to a four-membered loop scheme. Very surprisingly, it was found from 2D NOE experiments that the T-A base pair, formed in the loop consisting of the -TTTA- sequence, is a Hoogsteen pair. It is argued that the pairing of the bases in this scheme may facilitate the formation of a loop of two residues, since the distance of the C1' atoms in this base pair is 8.6 A instead of 10.4 A found in the canonical Watson-Crick base pair. Combination of the data obtained for the series of DNA fragments studied shows that the results can be explained by a simple, earlier proposed, loop folding principle which assumes that the folding of the four-membered loop is dictated by the stacking of the double-helical stem of the hairpin.  相似文献   

4.
TheDNA sequences 5′-d(CGC-AC-GCG)-3′ (HPAC), 5′-d(CGC-AA-GCG)-3′ (HPAA), 5′-d(CGC-TC-GCG)-3′ (HPTC), and 5′-d(CGC-CT-GCG)-3′ (HPCT), were studied by means of nmr spectroscopy. At low DNA concentration and no added salt all four molecules adopt a minihairpin structure, containing three Watson–Crick base pairs and a two-residue loop. The structure of the HPAC hairpin is based on quantitative distance restraints, derived by a full relaxation matrix approach (iterative relaxation matrix approach), together with torsion angles obtained from coupling constant analysis. The loop folding is of the H1-family type, characterized by continuous 3′-5′ stacking of the loop bases on the duplex stem. The structure of the HPAA hairpin is similar to that of HPAC, but is more flexible and has a lower thermodynamic stability (Tm 326 K vs 320 K). According to “weakly” distance-constrained simulations in water on the HPAC minihairpin, the typical H1-family loop folding remains intact during the simulation. However, residue-based R factors of simulated nuclear Overhauser effect spectroscopy spectra, free molecular dynamics simulations in vacuo, and unusual chemical shift profiles indicate partial destacking of the loop bases at temperatures below the overall melting midpoint. The dynamic nature of the loop bases gives insight into the geometrical tolerances of stacking between bases in H1-family minihairpin loops. The HPTC and HPCT minihairpins, both containing a pyrimidine base at the first position in the loop, adopt a H2-family type folding, in which the first loop base is loosely bound in the minor groove and the second loop base is stacked upon the helix stem. The thermal stability for these two hairpins corresponds to 327–329 K, but depends on local base sequence. Preference for the type of folding depends on a single substitution from a pyrimidine (H2 family) to a purine (H1 family) at the first position of the miniloop and is explained by differences in base stacking energies, steric size, and the number of possible candidates for hydrogen bonds in the minor groove. In view of newly collected data, previous models of the H1-family and H2-family hairpins had to be revised and are now compatible with the reported HPTC and HPAC structures. The structural difference between the refined structure of HPAC and HPTC show that a conversion between H1-family and H2-family hairpins is geometrically possible by a simple pivot point rotation of 270° along two torsion angles, thereby swiveling the first loop base from a stacked position in a H1-family folding toward a position in the minor groove in a H2-family folding. The second loop residue subsequently shifts to the position of the first base in a concerted fashion. © 1998 John Wiley & Sons, Inc. Biopoly 46: 375–393, 1998  相似文献   

5.
The rotational barriers ΔG (T) of the four atropisomeric polychlorinated biphenyls (PCBs) 2,2′,3,5′,6-pentachlorobiphenyl (PCB 95), 2,2′3,3′,4,6′-hexachlorobiphenyl (PCB 132), 2,2′,3,3′,6,6′-hexachlorobiphenyl (PCB 136), and 2,2′,3,4′,5′,6-hexachlorobiphenyl (PCB 149) were determined via on-line enantiomerization kinetics by a new stopped-flow multidimensional gas chromatographic technique (stopped-flow MDGC) employing Chirasil-Dex as chiral stationary phase for enantiomer separation. The calculated rotational barriers ΔG (T) of the trichloro-ortho-substituted atropisomers are 184 ± 2 kJ/mol for PCB 95, 189 ± 4 kJ/mol for PCB 132, and 184 ± 1 kJ/mol for PCB 149 at 300°C. The rotational barrier ΔG (T) of tetrachloro-ortho-substituted PCB 136 is at least (or higher than) 210 kJ/mol at 320°C. Chirality 10:316–320, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

6.
7.
Abstract

We report on the three dimensional structure of an RNA hairpin containing a 2′,5′-linked tetraribonucleotide loop, namely, 5′-rGGAC(UUCG)GUCC-3′ (where UUCG = U2′p5′U2′p5′C2′p5′G2′p5′). We show that the 2′,5′-linked RNA loop adopts a conformation that is quite different from that previously observed for the native 3′,5′-linked RNA loop. The 2′,5′- RNA loop is stabilized by (a) U:G wobble base pairing, with both bases in the anti conformation, (b) extensive base stacking, and (c) sugar–base contacts, all of which contribute to the extra stability of this hairpin structure.  相似文献   

8.
Phenolic compounds have increasingly attracted global concerns in recent years due to their strong bioaccumulation and potential toxicity. In this study, the adsorption of 2, 4-Dichlorophenol (2, 4-DCP), 2, 4-Dinitrophenol (2, 4-DNP) and 2, 4-Dimethyphenol (2, 4-DMP) on sediment at different temperatures was studied. Adsorption isotherms fitted well to the Freundlich model and the adsorption capacity was increased when the temperature increased from 5°C to 25°C. It was found that the adsorption process could be modeled well using pseudo-second-order kinetic equation. The thermodynamic parameter ΔG° for 2, 4-DCP, 2, 4-DNP and 2, 4-DMP varied between ?8.82 and ?13.68, ?4.9 and ?8.05, and ?7.52 and ?10.55 kJ/mol, respectively, with ΔH° (kJ/mol) and ΔS°(J/(mol·K)) measuring 55.397 and 0.2263, 40.121 and 0.1585, and 38.012 and 0.16, respectively. The calculated thermodynamic parameters suggested that adsorption of the three selected phenolic compounds was a spontaneous (ΔG°< 0), endothermic (ΔH°> 0), and entropy-driven reaction (ΔS° > 0). The thermodynamic data also suggested that the three selected phenolic compounds to sediment were closed to chemisorption because ΔH° was around 40.  相似文献   

9.
Abstract

The impact of intramolecular stereoelectronic effects has been examined by comparison of the solution structures of natural oligo-DNA duplex, 5′(1C2G3C4G5A6A7T8T9C10G11C12G)2 3′, and its carbocyclic-nucleotide analogues in which the pentose sugar in 2′-dA residue is replaced with its carbocyclic counterpart (i.e. 2′-deoxyaristeromycin). Based on the NMR evidences, it has been shown, that 2′-deoxyaristeromycin analog exists in a dynamic equilibrium between the two forms of duplexes, one with W-C bp and the second with Hoogsteen bp in ca 1:1 ratio at lower temperature (below 35°C) and as hairpin at higher temperature (from ~40° – 60°C).  相似文献   

10.
The temperature-profile curve of ethanol production of the yeast Saccharomyces cerevisiae Sc 5 is shown. Accordingly the biokinetic sphere of ethanol formation consists of 5 ranges. The maximum specific ethanol formation rate v0 is reached within the temperature limits of 32°C ≦ T ≦ 36°C, and the maximum temperature for ethanol formation amounts to Tmax = 57°C. Within the first suboptimum temperature range ethanol formation is not retarded thermally. Using a modified ARRHENIUS equation the activation energy of ethanol formation was calculated to be ΔHÊtOH = (78.5 ± 2.2) kJ/mol.  相似文献   

11.
To obtain general rules of peptide design using α,β-dehydro-residues, a sequence with two consecutive ΔPhe-residues, Boc-L -Val-ΔPhe–ΔPhe- L -Ala-OCH3, was synthesized by azlactone method in solution phase. The peptide was crystallized from its solution in an acetone/water mixture (70:30) in space group P61 with a=b=14.912(3) Å, c= 25.548(5) Å, V=4912.0(6) Å3. The structure was determined by direct methods and refined by a full matrix least-squares procedure to an R value of 0.079 for 2891 observed [I?3σ(I)] reflections. The backbone torsion angles ?1=?54(1)°, ψ1= 129(1)°, ω1=?177(1)°, ?2 =57(1)°, ψ2=15(1)°, ω2 =?170(1)°, ?3=80(1)°, ψ3 =7(2)°, ω3=?177(1)°, ?4 =?108(1)° and ψT4=?34 (1)° suggest that the peptide adopts a folded conformation with two overlapping β-turns of types II and III′. These turns are stabilized by two intramolecular hydrogen bonds between the CO of the Boc group and the NH of ΔPhe3 and the CO of Val1 and the NH of Ala4. The torsion angles of ΔPhe2 and ΔPhe3 side chains are similar and indicate that the two ΔPhe residues are essentially planar. The folded molecules form head-to- tail intermolecular hydrogen bonds giving rise to continuous helical columns which run parallel to the c-axis. This structure established the formation of two β-turns of types II and III′ respectively for sequences containing two consecutive ΔPhe residues at (i+2) and (i+3) positions with a branched β-carbon residue at one end of the tetrapeptide.  相似文献   

12.
Optical melting curves of 22 DNA dumbbells with the 16-base pair duplex sequence 5′-G-C-A-T-C-A-T-C-G-A-T-G-A-T-G-C-3′ linked on both ends by single-strand loops of At or Ct sequences (˛ = 2, 3, 4, 6, 8, 10, 14), Tt sequences (˛ = 2, 3, 4, 6, 8, 10), and Gt sequences (t = 2, 4) were measured in phosphate buffered solvents containing 30, 70, and 120 mM Na+. For dumbbells with loops comprised of at least three nucleotides, stability is inversely proportional to end-loop size. Dumbbells with loops comprised of only two nucleotide bases generally have lower stabilities than dumbbells with three base nucleotide loops. Experimental melting curves were analyzed in terms of the numerically exact (multistate) statistical thermodynamic model of DNA dumbbell melting previously described (T. M. Paner, M. Amaratunga & A. S. Benight (1992), Biopolymers 32, 881). Theoretically calculated melting curves were fitted to experimental curves by simultaneously adjusting model parameters representing statistical weights of intramolecular hairpin loop and single-strand circle states. The systematically determined empirical parameters provided evaluations of the energetics of hairpin loop formation as a function of loop size, sequence, and salt environment. Values of the free energies of hairpin loop formation ΔGloop(n > t) and single-strand circles, ΔGcir(N) as a function of end-loop size, t = 2-14, circle size, N = 32 + 2t, and loop sequence were obtained. These quantities were found to depend on end-loop size but not loop sequence. Their empirically determined values also varied with solvent ionic strength. Analytical expressions for the partition function Q(T) of the dumbbells were evaluated using the empirically evaluated best-fit loop parameters. From Q(T), the melting transition enthalpy ΔH, entropy ΔS, and free energy ΔG, were evaluated for the dumbbells as a function of end-loop size, sequence, and [Na+]. Since the multistate analysis is based on the numerically exact model, and considers a statistically significant number of theoretically possible partially melted states, it does not require prior assumptions regarding the nature of the melting transition, i.e., whether or not it occurs in a two-state manner. For comparison with the multistate analysis, thermodynamic transition parameters were also evaluated directly from experimental melting curves assuming a two-state transition and using the graphical van't Hoff analysis. Comparisons between results of the multistate and two-state analyses suggested dumbbells with loops comprised of six or fewer residues melted in a two-state manner, while the melting processes for dumbbells with larger end-loops deviate from two-state behavior.Dependence of thermodynamic parameters on[Na+] as a function of loop size suggests single-strand end-loops have different counterion binding properties than the melted circle. Results are compared with those obtained in an earlier study of dumbbells with the slightly different stem sequence 5'-G-C-A-T-A-G-A-T-G-A-G-A-A-T-G-C-3' linked on the ends by T loops (˛ = 2,3,4,6,8,10,14).© 1996 John Wiley &Sons, Inc.  相似文献   

13.
Abstract

The effect of pH and temperature on the apparent association equilibrium constant (Ka) for the binding of the bovine and porcine pancreatic secretory trypsin inhibitor (Kazal-type inhibitor, PSTI) to human leukocyte elastase has been investigated. At pH8.0, values of the apparent thermodynamic parameters for human leukocyte elastase: Kazal-type inhibitor complex formation are: bovine PSTT – Ka = 6.3 × 104M?1, δ5G° = -26.9kJ/mol, δH° = +11.7kJ/mol, and δS° = +1.3 × 102 entropy units; porcine PSTI –Ka = 7.0 × 103M?1,δG° = -21.5kJ/mol, δH° = +13.0kJ/mol, and δS° = +1.2 × 102 entropy units (values of Ka δG° and δS° were obtained at 21.0°C; values of δH° were temperature independent over the range (between 5.0°C and 45.0°C) explored). On increasing the pH from 4.5 to 9.5, values of Ka for bovine and porcine PSTI binding to human leukocyte elastase increase thus reflecting the acidic pK-shift of the His57 catalytic residue from ?7.0, in the free enzyme, to ?5.1, in the serine proteinase: inhibitor complexes. Thermodynamics of bovine and porcine PSTI binding to human leukocyte elastase has been analyzed in parallel with that of related serine (pro)enzyme/Kazal-type inhibitor systems. Considering the known molecular models, the observed binding behaviour of bovine and porcine PSTI to human leukocyte elastase was related to the inferred stereochemistry of the serine proteinase/inhibitor contact region(s).  相似文献   

14.
The present study deals with the kinetics and thermodynamics of the uptake of75Se-labeled SeO 3 2? from incubation media to lymphocytes cultivated from eight normal individuals (14–55 years of age, two females). The uptake of SeO 3 2? was evaluated on the assumption of pseudo-first-order kinetics with regard to a reacting cellular receptor pool. On the basis of the experimental observations, it was assumed that the suggested pool of receptor molecules-symbolically represented by “£H4”—reacts with SeO 3 2? in the hypothetical reaction: $$\pounds H_4 + SeO_3^{2 - } + 2H^ + \underset{{ - k_1 }}{\overset{{k_1 }}{\longleftrightarrow}}\pounds Se + 3H_2 O$$ The mean value of the change in standard free energy at 25°C was calculated to be ΔG o=?141.6±1.3 kJ/mol, while the corresponding mean value of the free energy of activation at 25°C was calculated to be ΔG 2+=?7.8±0.9 kJ/mol for the forward reaction. The calculated values of the corresponding individual changes in the respective standard enthalpies and entropies were mutually interdependent for all eight donors. ΔH o=?152+315ΔS o(kJ/mol) corresponding to the common value ΔG o??152 kJ/mol at 315°K. These mutual interdependencies are possibly the effect of variable conformational states (e.g., the macromolecular compactness) of the cellular receptor pools. This suggestion may furthermore be supported by the correlation traced between ΔH o vs the biological age in years of the donors: △H °?76.7?1.0 (age)kJ/mol (r = ?0.92) The calculated values of activation enthalpy ΔH 2+ kJ/mol and activation entropy ΔS 2+ (kJ/mol K) also mutually correlated linearly (r=0.998); the regression line was: △H 2+ = ?8.9 + 305△S2+ (kJ/mol) corresponding to the common value △H 2+ △ ?8.9 (kJ/mol) at 305°K Similarly the activation enthalpy ΔH 2+ vs the biological age in years correlated linearly: ΔH 2+=67.4?0.73(age) (kJ/mol) (r=?0.76) The range of ΔH 2+ studied was from 13.8 to 53.9 kJ/mol with a linearly corresponding range in ΔS 2+ from 73 to 205 J/mol K. The thermodynamic data reveal the selenite uptake during the hypothetical standard reaction to be exergonic and endothermic. Critical pH dependencies of the selenite uptake were explained.  相似文献   

15.
Abstract

We synthesized and analyzed DNA hairpin molecules with methylphosphonate linkages of defined stereochemistry in the loop region. Dinucleotide building blocks ApA and TpT (p indicating methylphosphonate linkage with either Rp or Sp configuration) were synthesized, separated into the diastereomers, and incorporated at three positions of the tetraloops 5′-CGCAAAAGCG-3′ and 5′-CGCTTTTGCG-3′. The oligonucleotides were analyzed for their melting behavior. With a Tm of 67.5°C the molecule 5′-CGCAAApAGCG-3′ with a Sp configurated methylphosphonate is distinctly more stable than the Rp configurated one (Tm = 60.5 °C) and the unmodified oligonucleotide (Tm = 64.5 °C). In contrast to double helical DNA where the substitution of a phosphorodiester by a Sp configurated methylphosphonate results in a lower Tm, in DNA hairpin the introduction of Sp and Rp methylphosphonates at specific positions can lead to a stabilization of the structure.  相似文献   

16.
Nucleic acids analogues, i.e., oligonucleotide N3′→P5′ phosphoramidates and N3′→P5′ thio‐phosphoramidates, containing 3′‐amino‐3′‐deoxy nucleosides with various 2′‐substituents were synthesized and extensively studied. These compounds resist nuclease hydrolysis and form stable duplexes with complementary native phosphodiester DNA and, particularly, RNA strands. An increase in duplexes' melting temperature, ΔTm, relative to their phosphodiester counterparts, reaches 2.2–4.0° per modified nucleoside. 2′‐OH‐ (RNA‐like), 2′‐O‐Me‐, and 2′‐ribo‐F‐nucleoside substitutions result in the highest degree of duplex stabilization. Moreover, under close to physiological salt and pH conditions, the 2′‐deoxy‐ and 2′‐fluoro‐phosphoramidate compounds form extremely stable triple‐stranded complexes with either single‐ or double‐stranded phosphodiester DNA oligonucleotides. Melting temperature, Tm, of these triplexes exceeds Tm values for the isosequential phosphodiester counterparts by up to 35°. 2′‐Deoxy‐N3′→P5′ phosphoramidates adopt RNA‐like C3′‐endo or N‐type nucleoside sugar‐ring conformations and hence can be used as stable RNA mimetics. Duplexes formed by 2′‐deoxy phosphoramidates with complementary RNA strands are not substrates for RNase H‐mediated cleavage in vitro. Oligonucleotide phosphoramidates and especially thio‐phosphoramidates conjugated with lipid groups are cell‐permeable and demonstrate high biological target specific activity in vitro. In vivo, these compounds show good bioavailability and efficient biodistribution to all major organs, while exerting acceptable toxicity at therapeutically relevant doses. Short oligonucleotide N3′→P5′ thio‐phosphoramidate conjugated to 5′‐palmitoyl group, designated as GRN163L (Imetelstat), was recently introduced as a potent human telomerase inhibitor. GRN163L is not an antisense agent; it is a direct competitive inhibitor of human telomerase, which directly binds to the active site of the enzyme and thus inhibits its activity. This compound is currently in multiple Phase‐I and Phase‐I/II clinical trials as potential broad‐spectrum anticancer agent.  相似文献   

17.
Abstract

A single-point substitution of the O4′ oxygen by a CH2 group at the sugar residue of A 6 (i.e. 2′-deoxyaristeromycin moiety) in a self-complementary DNA duplex, 5′- d(C1G2C3G4A5A6T7T8C9G10C11G12)2 ?3, has been shown to steer the fully Watson-Crick basepaired DNA duplex (1A), akin to the native counterpart, to a doubly A 6:T7 Hoogsteen basepaired (1B) B-type DNA duplex, resulting in a dynamic equilibrium of (1A)→←(1B): Keq = k1/k-1 = 0.56±0.08. The dynamic conversion of the fully Watson-Crick basepaired (1A) to the partly Hoogsteen basepaired (1B) structure is marginally kinetically and thermodynamically disfavoured [k1 (298K) = 3.9± 0.8 sec?1; δH°? = 164±14 kJ/mol;-TδS°? (298K) = ?92 kJ/mol giving a δG298°? of 72 kJ/mol. Ea (k1) = 167±14 kJ/mol] compared to the reverse conversion of the Hoogsteen (1B) to the Watson-Crick (1A) structure [k-1 (298K) = 7.0±0.6 sec-1, δH°? = 153±13 kJ/mol;-TδS°? (298K) = ?82 kJ/mol giving a δG298°? of 71 kJ/mol. Ea (k-1) = 155±13 kJ/mol]. A comparison of δG298°? of the forward (k1) and backward (k-1) conversions, (1A)→←(1B), shows that there is ca 1 kJ/mol preference for the Watson-Crick (1A) over the double Hoogsteen basepaired (1B) DNA duplex, thus giving an equilibrium ratio of almost 2:1 in favour of the fully Watson-Crick basepaired duplex. The chemical environments of the two interconverting DNA duplexes are very different as evident from their widely separated sets of chemical shifts connected by temperature-dependent exchange peaks in the NOESY and ROESY spectra. The fully Watson-Crick basepaired structure (1A) is based on a total of 127 intra, 97 inter and 17 cross-strand distance constraints per strand, whereas the double A 6:T7 Hoogsteen basepaired (1B) structure is based on 114 intra, 92 inter and 15 cross-strand distance constraints, giving an average of 22 and 20 NOE distance constraints per residue and strand, respectively. In addition, 55 NMR-derived backbone dihedral constraints per strand were used for both structures. The main effect of the Hoogsteen basepairs in (1B) on the overall structure is a narrowing of the minor groove and a corresponding widening of the major groove. The Hoogsteen basepairing at the central A 6:T7 basepairs in (1B) has enforced a syn conformation on the glycosyl torsion of the 2′- deoxyaristeromycin moiety, A 6, as a result of substitution of the endocyclic 4′-oxygen in the natural sugar with a methylene group in A 6. A comparison of the Watson-Crick basepaired duplex (1A) to the Hoogsteen basepaired duplex (1B) shows that only a few changes, mainly in α, σ and γ torsions, in the sugar-phosphate backbone seem to be necessary to accommodate the Hoogsteen basepair.  相似文献   

18.
Abstract

Oligonucleotides 3′-d(GTGTGTGTGG)-L-d(GGTGTGTGTG)-3′ (hp-GT) and 3′- d(G4STG4STG4STG4STGG)-L-d(GGTGTGTGTG)-3′ (hp-SGT), (L=(CH2CH2O)3), were shown by use of several optical techniques to form a novel parallel-stranded (ps) intramolecular double helix with purine-purine and pyrimidine-pyrimidine base pairing. The rotational relaxation time of hp-GT was similar to that of a 10-bp reference duplex, and the fraction of unpaired bases was determined to be ~ 7%, testifying to the formation of an intramolecular double helical hairpin by the sequence under the given experimental conditions. A quasi-two- state mode of ps-double helix formation was validated, yielding a helix-coil transition enthalpy of ?135±5 kJ/mol. The G-G and T·T (or 4ST·T) base pair configurations and conformational parameters of the double helix were derived with molecular modeling by force field techniques. Repetitive d(GT) sequences are abundant in telomers of different genomes and in the regulatory regions of genes. Thus, the observed conformational potential of the repetitive d(GT) sequence may be of importance in the regulation of cell processes.  相似文献   

19.
The structural and energetic perturbations caused by cavity-creating mutations (Leu-41 → Val and Leu-41 → Ala) in the dimeric 4-α-helical-bundle protein ROP have been characterized by CD spectroscopy and differential scanning calorimetry (DSC). Deconvolution of the CD spectra showed a decrease in α -helicity as a result of the amino acid exchanges that follows qualitatively the overall decrease in conformational stability. Transition enthalpies are sensitive probes of the energetic change associated with point mutations. ΔH0 values at the respective transition temperatures, T1/2 (71.0, 65.3, and 52.9°C at 0.5 mg/ml) decrease from 580 ± 20 to 461 ± 20 kJ/(mol of dimmer) and 335 ± 20 kJ/(mol of dimmer) for wildtype ROP (Steif, C., Weber, P., Hinz, H.-J., Flossdorf, J., Cesareni, G., Kokkinidis, M. Biochemistry 32:3867-3876, 1993), L41V, and L41A, respectively. The conformational stabilities at 25°C expressed by the standard Gibbs energies of denaturation, ΔG, are 71.7, 61.1, and 46.1 kJ/(mol of dimmer). The corresponding transition enthalpies have been obtained from extrapolation using the c(T)and c(T) functions. Their values at 25°C are 176.3, 101.9, and 141.7 kJ/(mol of dimmer) for wild-type ROP, L41V, and L41A, respectively. When the stability perturbation resulting from the cavity creating mutations is referred to the exchange of 1 mol of CH2 group, the average ΔΔG value is ?5.0 ± 1 kJ/(mol of CH2 group). This decrease in conformation stability suggests that dimeric ROP exhibits the same susceptibility to Leu → Yal and Leu → Ala exchanges as small monomeric proteins. Careful determinations of the partial specific heat capacities of wild-type and mutated protein solutions suggest that the mutational effects are predominantly manifested in the native rather than the unfolded state. © 1995 Wiley-Liss, Inc.  相似文献   

20.
《Inorganica chimica acta》1988,149(1):151-154
The extraction equilibrium of the hydronium-uranium(VI)-dicyclohexano-24-crown-8 complex was carried out in the crown ether1,2-dichloroethaneHCl aqueous solution system at different temperatures. The extraction complex has the overall composition (L)2·(H3O+·χH2O)2·UO2Cl42− (L = dicyclohexano-24-crown-8). The values of the extraction equilibrium constants (Kex) increase steadily with a decrease in temperature: 13.5 (298 K), 7.96 (301 K), 4.20 (303 K) and 2.07 (305 K). A plot of log Kex against 1/T shows a straight line. The value of the enthalpy change, ΔH°, was calculated from the slope and equals −212 kJ mol−1. The value of the entropy change, ΔS°, was calculated from ΔH° and Kex and equals −690 J K−1 mol−1, whereas ΔG° = −6.45 kJ mol−1. Comparing these thermodynamic parameters with those of the dicyclohexano-18-crown-6 isomer A [1] (ΔS° = −314 J K−1 mol−1, ΔH° = −101 kJ mol−1 and ΔG° = −8.37 kJ mol−1), it can be seen that ΔH° and ΔS° are more negative for the former than for the latter, and both are enthalpy-stabilized complexes. The molecular structure of the complex has the feature that there are two H5O2+ ions in it, in contrast to the H3O+ ions in the dicyclohexano-18-crown-6 isomer A complex [1]. Each of the H5O2+ ions is held in the crown ether cavity by four hydrogen bonds. The H5O2+ ion has a central bond. The uranium atom forms UO2Cl42− as a counterion away from the crown ether. The formation of this complex is in good agreement with more negative entropy change and less negative free energy change, as mentioned above.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号