共查询到20条相似文献,搜索用时 78 毫秒
1.
In adult male rats, axotomy of the spinal nucleus of the bulbocavernosus (SNB) motoneurons transiently down-regulates androgen receptor (AR) immunoreactivity. The present study investigates the importance of target reinnervation in the recovery of AR expression in axotomized SNB motoneurons after short (up to 5 days) and long (1 to 6 weeks) periods of recovery. In the long-term recovery experiment, animals were divided into two groups. In one, the two stumps of the cut pudendal nerve, which carries the axons of the SNB motoneurons, were sutured together immediately after axotomy. In the second group, the proximal stump was ligated immediately after axotomy to prevent target reinnervation. Axotomy of the SNB motoneurons caused a significant down-regulation in AR immunoreactivity within 3 days. At 6 weeks, AR immunoreactivity was still depressed in ligated animals but had recovered to control levels in resutured animals. The recovery in the resutured group was coincident with the first signs of reinnervation of the target perineal muscles, although reinnervation seemed to lag behind AR immunoreactivity. SNB soma size was significantly reduced 2 weeks after axotomy and returned to control levels after 6 weeks of recovery only in the resutured animals. These findings suggest that the target perineal muscles play a role in the regulation of AR expression and androgen sensitivity in the SNB motoneurons, perhaps mediated by muscle-derived trophic factors. © 1995 John Wiley & Sons, Inc. 相似文献
2.
Androgens are thought to mediate sexual differentiation of spinal nucleus of the bulbocavernosus (SNB) motoneurons via actions on androgen receptors (ARs) within their target muscles bulbocavernosus and levator ani (LA). However, the cells within these muscles which mediate masculinization of the SNB remain undefined. Until recently, myocytes were thought to be the most likely candidate cell type. However, genetic tests of AR function in myocytes have failed to support a sufficient role for these cells in producing masculine SNB morphology, suggesting the involvement of other cell types. To identify other candidate cell types in the LA, we evaluated whether satellite cells or fibroblasts express AR. Fluorescent immunohistochemistry and confocal microscopy were used to evaluate whether satellite cells and fibroblasts express AR in neonatal male and female rats in the LA and an adjacent sexually monomorphic control muscle (CM). We found that a small proportion of satellite cells in the LA express AR and that this proportion is significantly greater in the LA compared to the CM. No sex differences were found between the proportions of satellite cells expressing AR in either muscle. Less colocalization of satellite cells and AR was seen in postnatal day 3 muscle than in postnatal day 1 muscle. In contrast, only negligible amounts of fibroblasts labeled with S100A4 express AR in either the LA or the CM. Together, findings support satellite cells, but not fibroblasts, as a candidate cell type involved in the sexual differentiation of the SNB neuromuscular system. © 2012 Wiley Periodicals, Inc. Develop Neurobiol 73: 448–454, 2013. 相似文献
3.
Naked mole‐rats are eusocial mammals that live in colonies with a single breeding female and one to three breeding males. All other members of the colony, known as subordinates, are nonreproductive and exhibit few sex differences in behavior or genital anatomy. This raises questions about the degree of sexual differentiation in subordinate naked mole‐rats. The striated perineal muscles associated with the phallus [the bulbocavernosus (BC), ischiocavernosus (IC), and levator ani (LA) muscles], and their innervating motoneurons, are sexually dimorphic in all rodents examined to date. We therefore asked whether perineal muscles and motoneurons were also sexually dimorphic in subordinate naked mole‐rats. Muscles similar to the LA and IC of other rodents were found in naked mole‐rats of both sexes. No clear BC muscle was identified, although a large striated muscle associated with the urethra in male and female naked mole‐rats may be homologous to the BC of other rodents. There were no sex differences in the volumes of the LA, IC, or the urethral muscles. Motoneurons innervating the perineal muscles were identified by retrograde labeling with cholera‐toxin‐conjugated horseradish peroxidase. All perineal motoneurons were found in a single cluster in the ventrolateral lateral horn, in a position similar to that of Onuf's nucleus of carnivores and primates. There was no sex difference in the size or number of motoneurons in Onuf's nucleus of naked mole‐rats. Thus, unlike findings in any other mammal, neither the perineal muscles nor the perineal motoneurons appear to be sexually differentiated in subordinate naked mole‐rats. © 2002 Wiley Periodicals, Inc. J Neurobiol 51: 33–42, 2002 相似文献
4.
J.‐J. Park S.L. Zup T. Verhovshek D.R. Sengelaub N.G. Forger 《Developmental neurobiology》2002,53(3):403-412
Motoneurons in the spinal nucleus of the bulbocavernosus (SNB) and their target muscles, bulbocavernosus and levator ani (BC/LA), constitute an androgen‐sensitive neuromuscular system. Testosterone regulates SNB soma size, SNB dendritic length, and BC/LA muscle mass in adult male rats. Recent evidence indicates that the cell death‐regulatory protein, Bcl‐2, may also play a role in adult neural plasticity. The present study examined whether gonadal hormones and/or the Bcl‐2 protein influence the morphology of the SNB neuromuscular system in adult B6D2F1 mice. In Experiment 1, adult wild‐type and Bcl‐2 overexpressing males were castrated and implanted with silastic capsules containing testosterone or left blank. Six weeks after castration, cholera toxin‐horseradish peroxidase was injected into the BC muscle to label SNB dendrites. Animals were killed 48 h later, and BC/LA muscle mass, SNB soma size, and SNB dendritic arbors were examined. In Experiment 2, wild‐type and Bcl‐2 overexpressing males were castrated or sham castrated, implanted with testosterone‐filled or blank capsules, and examined 12 weeks later. In both experiments, BC/LA muscle mass and SNB soma size were significantly reduced in castrates receiving blank capsules. Surprisingly, however, there was no effect of hormone manipulation on any of several measures of dendritic length. Thus, the dendritic morphology of SNB motoneurons appears to be relatively insensitive to circulating androgen levels in B6D2F1 mice. Bcl‐2 overexpression did not influence BC/LA muscle mass, SNB soma size, or SNB dendritic length, indicating that the morphology of this neuromuscular system and the response to castration are not altered by forced expression of the Bcl‐2 protein. © 2002 Wiley Periodicals, Inc. J Neurobiol 53: 403–412, 2002 相似文献
5.
Niel L Alves PA Pinzon N Holmes MM Lovern MB Monks DA 《Developmental neurobiology》2012,72(8):1114-1121
The spinal nucleus of the bulbocavernosus (SNB) neuromuscular system mediates sexual reflexes, and is highly sexually dimorphic in rats. While maintenance of this system in adulthood is mainly dependent on androgens, there is also evidence to suggest that glucocorticoids may have a catabolic effect. We conducted a series of studies to fully examine the influence of basal glucocorticoids on the size of the SNB motoneurons and the associated bulbocavernosus (BC) and levator ani (LA) muscles. Specifically, we examined whether the muscles and motoneurons of the SNB neuromuscular system are affected by: (1) blockade of endogenous glucocorticoids via delivery of the antagonist RU-486 at doses ranging from low to high, (2) removal of endogenous glucocorticoids via adrenalectomy, or (3) restoration of physiological corticosterone levels via implants following adrenalectomy. In each study, we found that muscle and motoneuron size were unaffected by glucocorticoid manipulation. In contrast to previous results with supraphysiological levels of glucocorticoids, our results indicate that basal, nonstress levels of glucocorticoids do not influence the size of the BC/LA muscles or their associated SNB motoneurons. 相似文献
6.
The bulbocavernosus (BC) and levator ani (LA) muscles of rats show remarkable androgen-dependent sexual dimorphism. These muscles are additionally of interest because they are thought to indirectly mediate sexual differentiation of innervating spinal motoneurons. This sexual differentiation of the BC/LA is thought to be due to an increase in muscle units in the male rat during the first week after birth. We examined the cellular basis of this differentiation by studying satellite cells in the LA of postnatal day 2.5 rats, when sexual dimorphism is already prominent. Two experiments were performed in which LA satellite cells were measured: (1) wild-type (WT) males were compared with females and to Tfm androgen receptor mutant males, which are androgen insensitive despite producing masculine amounts of testosterone, and (2) females treated prenatally and/or postnatally with testosterone proprionate were compared with females receiving vehicle injections. Our results indicate that WT males have a larger LA and a greater number of satellite cells in the LA muscle than females or Tfm males. However, satellite cell density was similar for all three groups. Prenatal testosterone treatment masculinized LA size and resulted in a corresponding increase in satellite cell populations, while postnatal TP treatment resulted in a tendency for increased satellite cell density without a significant increase in LA size. Taken together, these studies indicate that satellite cells in the neonatal LA muscle are sexually dimorphic, and that this dimorphism likely results from perinatal actions of androgens on androgen receptors. 相似文献
7.
Rats possess a sexually dimorphic neuromuscular system that controls penile reflexes critical for copulation. This system includes two motor nuclei in the lumbar cord and their target musculature in the perineum. The spinal nucleus of the bulbocavernosus (SNB) and the dorsolateral nucleus (DLN) motoneuron populations and their target perineal muscles are much larger in males than in females. The sex difference in motoneuron number develops via androgen-regulated differential cell death during the perinatal period; androgen also regulates retention of the target muscles. The developmental pattern and steroid sensitivity of peripheral afferents to the SNB/DLN motor nuclei were previously unknown. In order to characterize the peripheral sensory component of the dimorphic SNB/DLN system, the neurons of the relevant dorsal root ganglia (DRGs) were quantified in terms of number, size, and androgen sensitivity at various perinatal ages. DRG neuron number is greatest prenatally, then decreases in both sexes after birth; the timing and pattern of neuron number development are similar to those seen in the SNB and DLN. Postnatally, males have more DRG neurons than females, as a result of greater neuron death in the DRGs of females. Females treated with testosterone propionate during the perinatal period exhibit masculine development of DRG neuron number. Thus, the normal development of DRG neuron number parallels that of the SNB/DLN motor nuclei and target muscles in pattern and timing, is sexually dimorphic, and is regulated by androgen. © 1993 John Wiley & Sons, Inc. 相似文献
8.
James E. Johnson Yin Qin-Wei David Prevette Ronald W. Oppenheim 《Developmental neurobiology》1995,27(4):573-589
Spinal motoneurons that normally die during early development can be rescued by a variety of purified growth or neurotrophic factors and target tissue extracts. There is also indirect evidence that brain or supraspinal afferent input may influence lumbar motoneuron survival during development and that this effect may be mediated by central nervous system–derived trophic agents. This report examines the biological and biochemical properties of motoneuron survival activity obtained from extracts of the embryonic chick brain. Treatment with an ammonium sulfate (25% to 75%) fraction of embryonic day 16 (E16) or E10 brain extracts rescued many spinal motoneurons that otherwise die during the normal period of cell death in vivo (E6 to E10). The same fractions also enhanced lumbar motoneuron survival following deafferentation. There were both similarities and differences between the active fractions derived from brain extracts (BEX) when compared with extracts derived from target muscles (MEX) or with purified neurotrophic factors. Survival activity from E10 BEX was as effective in promoting motoneuron survival as E10 MEX and more effective than astrocyte-conditioned media. Unlike MEX, the active fractions from BEX also rescued placode-derived nodose ganglion cells. In addition, unlike nerve growth factor and brain-derived neurotrophic factor, active BEX fractions did not rescue neural crest-derived dorsal root ganglion cells or sympathetic ganglion neurons. Interestingly, among many cranial motor and other brainstem nuclei examined, only the survival of motoneurons from the abducens nucleus was enhanced by BEX. Active proteins obtained from BEX were further separated by gel filtration chromatography and by preparative isolelectric focusing techniques. Activity was recovered in a basic (pI8) and an acidic (pI5) small molecular weight protein fraction (20 kD or less). The specific activity of the basic fraction was increased ×66 when compared with the specific activity of crude BEX, and the basic fraction had a slightly higher specific activity than the acidic fraction. The biological and biochemical properties of these fractions are discussed in the context of known neurotrophic factors and their effects on normal and lesion-induced motoneuron death during development. © 1995 John Wiley & Sons, Inc. 相似文献
9.
10.
The mammalian upper respiratory tract (URT) serves as the common modality for aspects of respiration, deglutition, and vocalization. Although these actions are dependent on coordinated and specific neuromuscular control, little is known about the development of URT control centers. As such, this study investigated the occurrence of naturally occurring motoneuron cell death (MCD) in the nucleus ambiguus (NA) of a developmental series of rats. Standard histological techniques were used to count motoneurons in the ventrolateral brainstem where the mature NA is found. In addition, the neural tracer, fast Dil, was used to determine whether motoneurons were still migrating into the region of the NA during the period that cell counts were first taken. Furthermore, to elucidate the potential effect of inadvertently counting large interneurons on the assessment of motoneuron numbers, an antibody to γ-aminobutyric acid (GABA) was used. The results of this study have, for the first time, demonstrated that MCD occurs in a URT-related motor nucleus. Approximately a 50% cell death was observed during the prenatal development of NA, with no further loss seen postnatally. The fast DiI studies showed that by embryonic day 17, NA was fully formed, suggesting that motoneuron migration from the basal plate was complete. In addition, use of the GABA antibody showed a lack of inhibitory interneurons within the NA. The finding of MCD in the NA helps define a critical period in the formation of URT neuromuscular control. As the course of MCD is modifiable by epigenetic signals, insult to the organism during this prenatal period may compromise future URT control. © 1995 John Wiley & Sons, Inc. 相似文献
11.
We have previously reported on our investigation of motoneuron cell death (MCD) in the rat nucleus ambiguus (NA). This article focuses on the other major upper respiratory tract motor nucleus: the hypoglossal. The hypoglossal nucleus (XII) contains motoneurons to the tongue and, as such, plays a critical role in defining patterns of respiration, deglutition, and vocalization. Motoneuron counts were made in XII in a developmental series of rats. In addition, the neural tracer fast DiI was used to ensure that all hypoglossal motoneurons had migrated into the nucleus at the time cell death was assessed. Furthermore, an antibody to γ-aminobutyric acid (GABA) was used to determine the potential effect of inadvertently counting large interneurons on motoneuron counts. Cell death in XII was shown to occur entirely prenatally with a loss of 35% of cells between embryonic day 16 (E16) and birth. Fast DiI tracings of the prenatal hypoglossal nerve indicated that all motoneurons were present in a well-defined nucleus by E15. Immunocytochemical staining for GABA demonstrated considerably fewer interneurons than motoneurons in XII. These findings in XII, in comparison with those previously reported for NA, demonstrate differences in the timing and amount of cell death between upper respiratory tract motor nuclei. These differences establish periods during which one nucleus may be preferentially insulted by environmental or teratogenic factors. Preferential insults may underlie some of the upper respiratory tract incoordination pathologies seen in the newborn such as the sudden infant death syndrome (SIDS). © 1995 John Wiley & Sons, Inc. 相似文献
12.
Nancy G. Forger 《Hormones and behavior》2009,55(5):605-610
In honor of the 50th anniversary of the “organizational hypothesis,” this paper reviews work on sexual differentiation of the spinal cord and peripheral nervous system. Topics considered include the spinal nucleus of the bulbocavernosus, the ejaculation center, the cremaster nucleus, sensory and autonomic neurons, and pain. These relatively simple neural systems offer ample confirmation that early exposure to testicular hormones masculinizes the nervous system, including final common pathways. However, I also discuss findings that challenge, or at least stretch, the organizational hypothesis, with important implications for understanding sex differences throughout the nervous system. 相似文献
13.
14.
C. Fournier Le Ray D. Prevette R. W. Oppenheim J. Fontaine-Perus 《Developmental neurobiology》1993,24(9):1142-1156
The present study investigated the effects of spinal cord stimulation, neuromuscular blockade, or a combination of the two on neuromuscular development both during and after the period of naturally occurring motoneuron death in the chick embryo. Electrical stimulation of the spinal cord was without effect on motoneuron survival, synaptogenesis, or muscle properties. By contrast, activity blockade rescued motoneurons from cell death and altered synaptogenesis. A combination of spinal cord stimulation and activity blockade resulted in a marked increase in motoneuron death, and also altered synaptogenesis similar to that seen with activity blockade alone. Perturbation of normal nerve–muscle interactions by activity blockade may increase the vulnerability of developing motoneurons to excessive excitatory afferent input (spinal cord stimulation) resulting in excitotoxic-induced cell death. © 1993 John Wiley & Sons, Inc. 相似文献
15.
Results of electrophysiological studies suggest a significant role of the lateral spinal nucleus (LSpN) in the transmission
of nociceptive signals. In our study, the presence of Fos immunoreactivity and NADPH-diaphorase positivity was observed in
the rat LSpN following noxious peripheral subcutaneous stimulation. Formalin-induced unilateral hindpaw stimulation in the
rat caused bilateral NADPH-d reactivity and ipsilateral Fos expression in this nucleus. In the LSpN of the L3–L5 segments
of stimulated rats, on average, 4.1 ± 1.2 NADPH-d-positive, NADPH-d(+), 5.1+1.8 Fos-immunoreactive, Fos(+), and 3.0 ± 1.1
double-labeled neurons per 25-μm-thick section were found unilaterally. A close anatomical relationship between NADPH-d(+)
processes and Fos(+) cell nuclei in the LSpN was also observed following noxious peripheral stimulation. These neuroanatomical
findings support the hypothesis that the LSpN is involved in pain processing and suggest an important role of nitric oxide-mediated
signal transduction in this nucleus.
Neirofiziologiya/Neurophysiology, Vol. 40, No. 1, pp. 38–42, January–February, 2008. 相似文献
16.
Summary The levator ani muscle of the rat was examined by correlated light and electron microscopic morphometry. Corrections were made for shrinkage, compression, and differences in stretching. Age, castration, and subsequent testosterone treatment do not affect the fiber number, the filament lattice, and the size of the filaments and myonuclei. The fibers in intact growing males increase in width and length. The number of myonuclei rises, although relatively slower than the amount of contractile material.Castration, performed at six weeks, partially suppresses fiber growth. The increase of mean fiber width is more strongly inhibited than that of fiber length. Myonuclear multiplication is almost completely arrested in castrates, and the amount of contractile material per myonucleus is lower than in intact males of equal age.Testosterone, administered at about two months following orchidectomy, highly accelerates the transversal fiber growth, but fiber length is not significantly influenced. Between the fourth and seventh day of treatment a marked increase in myonuclear number occurs.Analysis of the frequency distribution of the individual fiber widths, which is logarithmic-normal in intact males, revealed that the hormonal influence on the net result of protein anabolism and catabolism markedly differs in the various fibers of a single muscle.With the technical assistance of Tineke J. Hoogenboezem. 相似文献
17.
P. G. H. Clarke 《Developmental neurobiology》1992,23(9):1140-1158
The present review covers all the published data on neuron death in the developing avian isthmo–optic nucleus (ION), which provides a particularly convenient situation for studying the causes and consequences of neuron death in the development of the vertebrate central nervous system. The main conclusions are as follows: The naturally occurring neuron death in the ION is related both temporally and causally to the ION's formation of afferent and efferent connections. The ION neurons need to obtain both anterograde and retrograde survival signals in order to survive during a critical period in embryogenesis. They may compete, at least for the retrograde signals, but the nature of the competition is still unclear. The retrograde signals are modified by action potentials. Neurons dying from a lack of anterograde survival signals can be distinguished morphologically from ones dying from a lack of retrograde signals. The neuron death refines circuitry by selectively eliminating neurons with “aberrant” axons projecting to the “wrong” (i.e., ipsilateral) retina or to the “wrong” (topographically inappropriate) part of the contralateral retina. © 1992 John Wiley & Sons, Inc. 相似文献
18.
To assess which hormones are capable of masculinizing the neural song system of zebra finch hatchlings, we implanted female hatchlings with estrogen (estradiol [E2], 75 μg, n = 9), testosterone (T, 75–88 μg, n = 13), androstenedione (AE, 75 μg, n = 7), progesterone (P, 117 μg, n = 10), or nothing (Blanks, n = 10) and compared these to unimplanted males (n = 7). Implants, consisting of a hormone and Silastic mixture encased in polyethylene tubing, were placed under the skin of the breast on the day of hatching. Birds were killed when they were subadult (58 to 68 days old). We measured volumes of area X, the higher vocal center (HVC), and the robust nucleus of the archistriatum (RA); measured soma sizes in the lateral magnocellular nucleus of the neostriatum (IMAN), HVC, and RA: and counted RA neurons. E2 masculinized all measures in the song system and nearly sex-reversed the size of RA neurons. T masculinized volumes of nuclei and soma sizes but not the number or spacing of RA neurons. E2 was always at least as effective as T in masculinizing measures of the song system and was usually more effective. AE and P did not significantly masculinize any measure. These data suggest that E2 is more potent than aromatizable androgens or P in masculinizing the female song system in development and that the action of E2 alone may be sufficient to masculinize the volume of song control nuclei and the size and number of neurons. © 1995 John Wiley & Sons, Inc. 相似文献
19.
大鼠三叉神经脊束间质核接受内脏和躯体伤害性信息的calbindin D-28k神经元向臂旁核的投射 总被引:3,自引:0,他引:3
应用荧光金(FG)逆行束路追踪结合Fos和calbindin D-28k(CB)免疫荧光组织化学三重标记法,观察了大鼠三叉神经脊束间质核(INV)接受口面部皮肤和上消化道伤害性信息的CB神经元向臂旁核(PB)的投射。结果显示,口周刺激组FG逆标细胞和Fos免疫反应阳性细胞主要分布于注射和刺激同侧INV的背侧边缘旁核(PaMd)和三叉旁核(PaV);大量的CB免疫阳性细胞分布于双侧INV。同侧INV内FG逆标细胞中有77.3%呈CB免疫反应阳性,40.7%呈Fos免疫反应阳性。在FG和CB双标记的神经元中,又有一部分(约38.5%)为FG/CB/Fos三标细胞。上消化道刺激组的FG逆标细胞、CB免疫阳性细胞和FG/CB双标细胞的数量和分布与口周刺激组相似,但Fos免疫阳性细胞分布于双侧的INV。在同侧INV,FG/Fos双标细胞占FG逆标细胞总数的41.9%,FG/CB/Fos三标细胞占FG/CB双标细胞的52.0%。以上结果提示,INV直接投射到PB的CB神经元接受口面部皮肤和上消化道的伤害性信息,CB神经元可能参与经INV中继的外周伤害性信息向PB的传递。 相似文献
20.
Neuron number in the principal nucleus of the bed nucleus of the stria terminalis (BNSTp) is greater in adult male mice than in females. Deletion of the proapoptotic gene, Bax, increases the number of BNSTp cells in adulthood and eliminates the sex difference in cell number. Here, we map the ontogeny of sex differences in nuclear volume and cell number in the BNSTp of neonatal mice, and evaluate the role of cell death in the development of these differences. We find that BNSTp volume and cell number do not differ between male and female wild-type mice on postnatal days P3, P5, or P7. Sex differences emerge after the first postnatal week and both measures are significantly greater in males than in females on P9 and P11. Cell death, assessed by TUNEL staining, was observed in the BNSTp of both sexes from P1-P8. Females had more TUNEL-positive cells than males from approximately P3-P6, with the maximum number of dying cells observed on P5/P6. To test whether the Bax gene is required for sexually dimorphic cell death in the BNSTp, TUNEL cells were counted on P6 in Bax -/- mice and their Bax +/+ siblings. Bax gene deletion nearly abolished TUNEL-positive cells in the BNSTp of both sexes. Together, these findings support the interpretation that the sex difference in BNSTp cell number seen in adulthood is due to Bax-dependent, sexually dimorphic cell death during the first week of life. 相似文献