首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
栾鹏涛  兰天  彭丹  于黎  张亚平 《遗传》2009,31(9):875-881
系统发育研究已是澄清所有进化历史问题的必由之路。选择合适的分子标记以及最大限度地挖掘和利用其所包含的系统发育信息是构建可靠的系统发育树的关键。等位基因杂合子(Intra-individual allele heterozygotes, IIAHs)是核基因内含子作为系统发育研究中的分子标记时常常出现的现象。如何挖掘并利用其中所包含的系统发育信息成为近年来系统发育学的研究热点。文章从此现象的产生、杂合子的分离以及现有的研究方法3个方面详尽概述, 阐述了IIAHs及其在系统发育分析中的最新研究进展。  相似文献   

2.

Background  

Ants of the genus Lasius are ecologically important and an important system for evolutionary research. Progress in evolutionary research has been hindered by the lack of a well-founded phylogeny of the subgenera, with three previous attempts disagreeing. Here we employed two mitochondrial genes (cytochrome c oxidase subunit I, 16S ribosomal RNA), comprising 1,265 bp, together with 64 morphological characters, to recover the phylogeny of Lasius by Bayesian and Maximum Parsimony inference after exploration of potential causes of phylogenetic distortion. We use the resulting framework to infer evolutionary pathways for social parasitism and fungiculture.  相似文献   

3.
Patterns of aggressive and affiliative behavior, such as counter aggression and reconciliation, are said to covary in the genus Macaca; this is referred to as the systematic variation hypothesis. These behavior patterns constitute a species dominance style. Van Schaik's [1989] socioecological model explains dominance style in macaques in terms of within- and between-group contest competition. Dominance style is also said to correlate with phylogeny in macaques. The present study was undertaken to examine phylogenetic and socioecological explanations of dominance style, as well as the systematic variation hypothesis. We collected data on counter aggression and reconciliation from a habituated group of Assamese macaques (Macaca assamensis) at the Tukeswari Temple in Assam, India. The proportion of agonistic episodes that involved counter aggression was relatively low. Counter aggression, however, occurred more often among males than among females, and it was most common when females initiated aggression against males. The conciliatory tendency for this group of Assamese macaques was 11.2%. The frequency of reconciliation was low for fights among males and for fights among females, but reconciliation was particularly rare for opposite-sexed opponents. Female social relationships were consistent with the systematic variation hypothesis, and suggest a despotic dominance style. A despotic dominance style in Assamese macaques weakens the correlation between dominance style and phylogeny in macaques, but it is not inconsistent with the socioecological model. Male-female relationships were not well explained by the despotic-egalitarian framework, and males may well have more tolerant social relationships than do females. Sex differences need to be considered when categorizing species according to dominance style.  相似文献   

4.

Premise

Bryophytes form a major component of terrestrial plant biomass, structuring ecological communities in all biomes. Our understanding of the evolutionary history of hornworts, liverworts, and mosses has been significantly reshaped by inferences from molecular data, which have highlighted extensive homoplasy in various traits and repeated bursts of diversification. However, the timing of key events in the phylogeny, patterns, and processes of diversification across bryophytes remain unclear.

Methods

Using the GoFlag probe set, we sequenced 405 exons representing 228 nuclear genes for 531 species from 52 of the 54 orders of bryophytes. We inferred the species phylogeny from gene tree analyses using concatenated and coalescence approaches, assessed gene conflict, and estimated the timing of divergences based on 29 fossil calibrations.

Results

The phylogeny resolves many relationships across the bryophytes, enabling us to resurrect five liverwort orders and recognize three more and propose 10 new orders of mosses. Most orders originated in the Jurassic and diversified in the Cretaceous or later. The phylogenomic data also highlight topological conflict in parts of the tree, suggesting complex processes of diversification that cannot be adequately captured in a single gene-tree topology.

Conclusions

We sampled hundreds of loci across a broad phylogenetic spectrum spanning at least 450 Ma of evolution; these data resolved many of the critical nodes of the diversification of bryophytes. The data also highlight the need to explore the mechanisms underlying the phylogenetic ambiguity at specific nodes. The phylogenomic data provide an expandable framework toward reconstructing a comprehensive phylogeny of this important group of plants.  相似文献   

5.

Background

Species number, functional traits, and phylogenetic history all contribute to characterizing the biological diversity in plant communities. The phylogenetic component of diversity has been particularly difficult to quantify in species-rich tropical tree assemblages. The compilation of previously published (and often incomplete) data on evolutionary relationships of species into a composite phylogeny of the taxa in a forest, through such programs as Phylomatic, has proven useful in building community phylogenies although often of limited resolution. Recently, DNA barcodes have been used to construct a robust community phylogeny for nearly 300 tree species in a forest dynamics plot in Panama using a supermatrix method. In that study sequence data from three barcode loci were used to generate a well-resolved species-level phylogeny.

Methodology/Principal Findings

Here we expand upon this earlier investigation and present results on the use of a phylogenetic constraint tree to generate a community phylogeny for a diverse, tropical forest dynamics plot in Puerto Rico. This enhanced method of phylogenetic reconstruction insures the congruence of the barcode phylogeny with broadly accepted hypotheses on the phylogeny of flowering plants (i.e., APG III) regardless of the number and taxonomic breadth of the taxa sampled. We also compare maximum parsimony versus maximum likelihood estimates of community phylogenetic relationships as well as evaluate the effectiveness of one- versus two- versus three-gene barcodes in resolving community evolutionary history.

Conclusions/Significance

As first demonstrated in the Panamanian forest dynamics plot, the results for the Puerto Rican plot illustrate that highly resolved phylogenies derived from DNA barcode sequence data combined with a constraint tree based on APG III are particularly useful in comparative analysis of phylogenetic diversity and will enhance research on the interface between community ecology and evolution.  相似文献   

6.
More than a decade ago, Heliobacteria were recognised to contain a Rieske/cytb complex in which the cytochrome b subunit is split into two separate proteins, a peculiar feature characteristic of the cyanobacterial and plastidic b 6 f complex. The common presence of RCI-type reaction centres further emphasise possible evolutionary links between Heliobacteria, Chlorobiaceae and Cyanobacteria. In this contribution, we further explore the evolutionary relationships among these three phototrophic lineages by both molecular phylogeny and consideration of phylogenetic marker traits of the superfamily of Rieske/cytb complexes. The combination of these two methods suggests the existence of a “green” clade involving many non-phototrophs in addition to the mentioned RCI-type photosynthetic organisms. Structural and functional idiosyncrasies are (re-)interpreted in the framework of evolutionary biology and more specifically evolutionary bioenergetics.  相似文献   

7.

Background  

Plant circadian clocks regulate many photoperiodic and diurnal responses that are conserved among plant species. The plant circadian clock system has been uncovered in the model plant, Arabidopsis thaliana, using genetics and systems biology approaches. However, it is still not clear how the clock system had been organized in the evolutionary history of plants. We recently revealed the molecular phylogeny of LHY/CCA1 genes, one of the essential components of the clock system. The aims of this study are to reconstruct the phylogenetic relationships of angiosperm clock-associated PRR genes, the partner of the LHY/CCA1 genes, and to clarify the evolutionary history of the plant clock system in angiosperm lineages.  相似文献   

8.
The importance and prevalence of phylogenetic tracking between hosts and dependent organisms caused by co‐evolution and shifting between closely related host species have been debated for decades. Most studies of phylogenetic tracking among phytophagous insects and their host plants have been limited to insects feeding on a narrow range of host species. However, narrow host ranges can confound phylogenetic tracking (phylogenetic tracking hypothesis) with host shifting between hosts of intermediate relationship (intermediate hypothesis). Here, we investigated the evolutionary history of the Enchenopa binotata complex of treehoppers. Each species in this complex has high host fidelity, but the entire complex uses hosts across eight plant orders. The phylogenies of E. binotata were reconstructed to evaluate whether (1) tracking host phylogeny; or (2) shifting between intermediately related host plants better explains the evolutionary history of E. binotata. Our results suggest that E. binotata primarily shifted between both distant and intermediate host plants regardless of host phylogeny and less frequently tracked the phylogeny of their hosts. These findings indicate that phytophagous insects with high host fidelity, such as E. binotata, are capable of adaptation not only to closely related host plants but also to novel hosts, likely with diverse phenology and defense mechanisms.  相似文献   

9.
A Brief Review of Metazoan Phylogeny and Future Prospects in Hox-Research   总被引:1,自引:0,他引:1  
Underlying any analysis on the evolution of development is aphylogenetic framework, whether explicitly stated or implied.As such, differing views on phylogenetic relationships leadto variable interpretations of how developmental mechanismshave changed through time. Over the past decade, many long-standinghypotheses about animal evolution have been questioned causingsubstantial changes in the assumed phylogenetic framework underlyingcomparative developmental studies. Current hypotheses aboutearly metazoan history suggest that three, not two, major lineagesof bilateral animals originated in the Precambrian: the Deuterostomes(e.g., seastars, acorn worms, and vertebrates), the Ecdysozoans(e.g., nematodes and arthropods), and the Lophotrochozoans (e.g.,annelids, mollusks, and lophophorates). Although informationin Hox-genes bears directly on our understanding of early metazoanevolution and the formation of body plans, research effort hasbeen focused primarily on two taxa, insects and vertebrates.By sampling a greater diversity of metazoan taxa and takingadvantage of biotechnological advances in genomics, we willnot only learn more about metazoan phylogeny, but will alsogain valuable insight as to the key evolutionary forces thatestablished and maintained metazoan bauplans.  相似文献   

10.
Lichen symbioses are defined as a symbiotic relationship between a mycobiont (generally an ascomycete) and one or more photobionts (green algae or/and cyanobacteria). It was proposed that cephalodia emancipation is an evolutionary driver for photobiont switch from chlorophyte to cyanobacteria. In this study we want to test the monophyly of cyanolichens and to measure the phylogenetic signal of the symbiotic relationship between cyanobacteria and a mycobiont partner in the lichen genus Pseudocyphellaria. This genus includes some species that have a chlorophyte as primary photobiont (and Nostoc in internal cephalodia), while others have only cyanobacteria. In a phylogenetic framework we measure the phylogenetic signal (or phylogenetic dispersion) as well as mapped photobiont switches performing stochastic character mapping. Results show that having cyanobacteria as main photobiont has a strong phylogenetic signal that follows a Brownian motion model. Seven clades in the phylogeny had an ancestor with cyanobacteria. Reversal to a green algae photobiont is rare. Several switches were estimated through evolutionary time suggesting that there was some flexibility in these traits along the phylogeny; however, close relatives retained cyanobacteria as main photobiont throughout the cyanolichen’s history. Photobiont switches from green algae to cyanobacteria might enhance ecotypical differentiation. These ecotypes could lead to several speciation events in the new lineage resulting in the phylogenetic signal found in this study. We give insights into the origin of lichen diversity exploring the photobiont switch in a phylogenetic context in Pseudocyphellaria s. l. as a model genus.  相似文献   

11.
A molecular phylogeny of New World emballonurid bats based on parsimony and Bayesian analyses of loci from the three different nuclear genetic transmission pathways in mammals (autosomal, X, and Y chromosomes) is well supported and independently corroborated by each individual gene tree. This is in contrast to a single most parsimonious but poorly supported tree based on morphological data, which has only one intergeneric or higher relationship shared with the molecular phylogeny. Combining the morphological and molecular data partitions results in a tree similar to the molecular tree suggesting a high degree of homoplasy and low phylogenetic signal in the morphological data set. Behavioral data are largely incomplete and likewise produce a poorly resolved tree. Nonetheless, patterns of evolution in morphology and behavior can be investigated by using the molecular tree as a phylogenetic framework. Character optimization of the appearance of dorsal fur and preferred roosting sites maps consistently and are correlated on the phylogeny. This suggests an association of camouflage for bats with unusual appearance (two dorsal stripes in Rhynchonycteris and Saccopteryx, or pale fur in Cyttarops and Diclidurus) and roosting in exposed sites (tree trunks or under palm leaves). In contrast, the ancestral states for Old and New World emballonurids are typically uniform brown or black, and they usually roost in sheltered roosts such as caves and tree hollows. Emballonuridae is the only family of bats that has a sac-like structure in the wing propatagium, which is found in four New World genera. Mapping the wing sac character states onto the phylogeny indicates that wing sacs evolved independently within each genus and that there may be a phylogenetic predisposition for this structure. Ear orientation maps relatively consistently on the molecular phylogeny and is correlated to echolocation call parameters and foraging behavior, suggesting a phylogenetic basis for these character systems.  相似文献   

12.
The taxonomy and phylogeny of Penaeoidea have long been fraught with controversy. Here, we carried out the first mitochondrial phylogenomic analysis on all the penaeoid families and tribes, including nine newly sequenced and 14 published mitogenomes, towards elucidating the phylogeny and evolutionary history of Penaeoidea. All these nine mitogenomes exhibit the pancrustacean ground pattern, except that Benthonectes filipes contains two additional clusters of tRNAAla, tRNAArg and tRNAAsn and an uncommon noncoding region. The resulted phylogenetic tree is generally well resolved with Benthesicymidae sister to Aristeidae, forming a clade with Solenoceridae. Contrary to traditional classification, this clade has a sister relationship with the tribe Penaeini of the family Penaeidae. The family Sicyoniidae is deeply nested within the penaeid tribe Trachypenaeini which forms a sister clade with the remaining penaeid tribe, Parapenaeini. As the family Penaeidae is recovered to be polyphyletic, the three tribes in Penaeidae are all elevated to familial status. On the other hand, the family Sicyoniidae is retained to accommodate Trachypenaeini because they are now synonyms and the former name is more senior. This work is the first molecular analysis concurring with the latest findings in fossil assessments showing that Parapeaneini is the most primitive in Penaeoidae. Our results also illustrate a shallow‐water origin and an onshore–offshore evolutionary shift in penaeoid shrimps.  相似文献   

13.
The living Old World monkeys, family Cercopithecidae, are the most successful group of nonhuman primates alive today. Overall, they account for over one quarter of the extant genera of primates and approximately 40% of the species. They have an extensive fossil record extending back to the early and middle Miocene of Africa.1,2 Despite this specific diversity and a long evolutionary history, it is commonly argued that the group is relatively uniform in both its skeletal3 and dental4 anatomy, suggesting that much of the current taxonomic diversity is a relatively recent phenomenon. In such a species group, it is perhaps not surprising that the taxonomy of Old World monkeys is subject to many differing classifications. Thus, in recent years, authors have recognized as few as 10 and as many as 22 different genera within the family. Although some of this greater-than-two-fold difference in the number of genera can be attributed to the “splitting” versus “lumping” philosophies of different researchers, much of it is based on major disagreements over phylogenetic relationships. Recent studies of the genetics and chromosomes of this group have illuminated Old World monkey phylogeny in many ways. Some of these studies have resolved longstanding debates based on morphological data; others have revealed phylogenetic relationships that morphologists had never suspected.  相似文献   

14.
Advances in the understanding of biological radiations along tropical mountains depend on the knowledge of phylogenetic relationships among species. Here we present a species-level molecular phylogeny based on a multilocus dataset for the Andean hummingbird genus Coeligena. We compare this phylogeny to previous hypotheses of evolutionary relationships and use it as a framework to understand patterns in the evolution of sexual dichromatism and in the biogeography of speciation within the Andes. Previous phylogenetic hypotheses based mostly on similarities in coloration conflicted with our molecular phylogeny, emphasizing the unreliability of color characters for phylogenetic inference. Two major clades, one monochromatic and the other dichromatic, were found in Coeligena. Closely related species were either allopatric or parapatric on opposite mountain slopes. No sister lineages replaced each other along an elevational gradient. Our results indicate the importance of geographic isolation for speciation in this group and the potential interaction between isolation and sexual selection to promote diversification.  相似文献   

15.
被子植物系统发育深层关系研究: 进展与挑战   总被引:1,自引:0,他引:1  
曾丽萍  张宁  马红 《生物多样性》2014,22(1):21-434
被子植物系统发育学是研究被子植物及其各类群间亲缘关系与进化历史的学科。从20世纪90年代起, 核苷酸和氨基酸序列等分子数据开始被广泛运用于被子植物系统发育研究, 经过20多年的发展, 从使用单个或联合少数几个细胞器基因, 到近期应用整个叶绿体基因组来重建被子植物的系统发育关系, 目、科水平上的被子植物系统发育框架已被广泛接受。在这个框架中, 基部类群、主要的5个分支(即真双子叶植物、单子叶植物、木兰类、金粟兰目和金鱼藻目)、每个分支所包含的目以及几个大分支包括的核心类群等都具有高度支持。与此同时, 细胞器基因还存在一些固有的问题, 例如单亲遗传、系统发育信息量有限等, 因此近年来双亲遗传的核基因在被子植物系统发育研究中的重要性逐渐得到关注, 并在不同分类阶元的研究中都取得了一定进展。但是, 被子植物系统发育中仍然存在一些难以确定的关系, 例如被子植物5个分支之间的关系、真双子叶植物内部某些类群的位置等。本文简述了20多年来被子植物系统发育深层关系的主要研究进展, 讨论了被子植物系统发育学常用的细胞器基因和核基因的选用, 已经确定和尚未确定系统发育位置的主要类群, 以及研究中尚存在的问题和可能的解决方法。  相似文献   

16.
The major vectors of malaria in sub-Saharan Africa belong to subgenus Cellia. Yet, phylogenetic relationships and temporal diversification among African mosquito species have not been unambiguously determined. Knowledge about vector evolutionary history is crucial for correct interpretation of genetic changes identified through comparative genomics analyses. In this study, we estimated a molecular phylogeny using 49 gene sequences for the African malaria vectors An. gambiae, An. funestus, An. nili, the Asian malaria mosquito An. stephensi, and the outgroup species Culex quinquefasciatus and Aedes aegypti. To infer the phylogeny, we identified orthologous sequences uniformly distributed approximately every 5 Mb in the five chromosomal arms. The sequences were aligned and the phylogenetic trees were inferred using maximum likelihood and neighbor-joining methods. Bayesian molecular dating using a relaxed log normal model was used to infer divergence times. Trees from individual genes agreed with each other, placing An. nili as a basal clade that diversified from the studied malaria mosquito species 47.6 million years ago (mya). Other African malaria vectors originated more recently, and independently acquired traits related to vectorial capacity. The lineage leading to An. gambiae diverged 30.4 mya, while the African vector An. funestus and the Asian vector An. stephensi were the most closely related sister taxa that split 20.8 mya. These results were supported by consistently high bootstrap values in concatenated phylogenetic trees generated individually for each chromosomal arm. Genome-wide multigene phylogenetic analysis is a useful approach for discerning historic relationships among malaria vectors, providing a framework for the correct interpretation of genomic changes across species, and comprehending the evolutionary origins of this ubiquitous and deadly insect-borne disease.  相似文献   

17.
The Neotropical leaf litter frog genus Pristimantis is very species-rich, with 526 species described to date, but the full extent of its diversity is much higher and remains unknown. This study explores the phylogenetic processes and resulting evolutionary patterns of diversification in Pristimantis. Given the well-recognised failure of morphology- and community-based species groups to describe diversity within the genus, we apply a new test for the presence and phylogenetic distribution of higher evolutionary units. We developed a phylogeny based on 260 individuals encompassing 149 Pristimantis presumed species, sampled at mitochondrial and nuclear genes (3718 base pair alignment), combining new and available sequence data. Our phylogeny broadly agrees with previous studies, both in topology and age estimates, with the origin of Pristimantis at 28.97 (95% HDP =21.59 – 37.33) million years ago (MYA). New taxa that we add to the genus, which had not previously been included in Pristimantis phylogenies, suggest considerable diversity remains to be described. We assessed patterns of lineage origin and recovered 14 most likely (95% CI: 13–19) phylogenetic clusters or higher evolutionary significant units (hESUs) within Pristimantis. Diversification rates decrease towards the present following a density-dependent pattern for Pristimantis overall and for most hESU clusters, reflecting historical evolutionary radiation. The timing of diversification suggests that geological events in the Miocene, such as Andes orogenesis and Pebas system formation and drainage, may have had a direct or indirect impact on the evolution of Pristimantis and thus contributed to the origins of evolutionary independent phylogenetic clusters.  相似文献   

18.
Effectively adapting to climate change involves overcoming social and ecological system barriers. The present study uses a three‐phase adaptation framework to propose adaptation strategies aimed at overcoming socioecological barriers of the food–energy–water (FEW) nexus. Cradle‐to‐farm‐gate land, greenhouse gas (GHG), and water impacts—that derive from food consumption in the United States—are analyzed and differentiated by major demographic groups (Black, Latinx, and White). Results indicate that the White demographic yields the highest per capita GHG (680 kg of CO2 eq?year?1) and water impacts (328,600 L?year?1) from food consumption, whereas the Black demographic yields the highest per capita land impacts (1,770 m2?year?1) from food consumption. Our findings suggest that obtaining data with the intention of building consensus across sociodemographic lines overcomes barriers in the understanding phase, leading to increased social receptivity for many planning and managing phase processes. Specifically, we find that identifying and developing leaders who possess the cognitive and interpersonal capacity to manage many variables and stakeholders is key to assessing and selecting adaptation options in the planning phase. We also propose using government programming to encourage environmentally friendly food purchasing behavior. Then, we discuss how our proposals could be used in adaptation feasibility and evaluation activities in the managing phase. In all, these findings facilitate the development of improved climate change adaptation and policy by satisfying the understanding phase of the climate change adaptation framework, establishing a cross‐disciplinary methodological approach to addressing socioecological problems, and providing useful FEW impact data for FEW nexus and climate change researchers.  相似文献   

19.
Order Diplobathrida is a major clade of camerate crinoids spanning the Ordovician–Mississippian, yet phylogenetic relationships have only been inferred for Ordovician taxa. This has hampered efforts to construct a comprehensive tree of life for crinoids and develop a classification scheme that adequately reflects diplobathrid evolutionary history. Here, I apply maximum parsimony and Bayesian phylogenetic approaches to the fossil record of diplobathrids to infer the largest tree of fossil crinoids to date, with over 100 genera included. Recovered trees provide a framework for evaluating the current classification of diplobathrids. Notably, previous suborder divisions are not supported, and superfamily divisions will require significant modification. Although numerous revisions are required for families, most can be retained through reassignment of genera. In addition, recovered trees were used to produce phylogeny‐based estimates of diplobathrid lineage diversity. By accounting for ghost lineages, phylogeny‐based richness estimates offer greater insight into diversification and extinction dynamics than traditional taxonomy‐based approaches alone and provide a detailed summary of the ~150 million‐year evolutionary history of Diplobathrida. This study constitutes a major step toward producing a phylogeny of the Crinoidea and documenting crinoid diversity dynamics. In addition, it will serve as a framework for subsequent phylogeny‐based investigations of macroevolutionary questions.  相似文献   

20.
The six sibling species of the Neotropical Drosophila willistoni group have a long history in studies of evolutionary biology, yet to date only one molecular study, which used allozymes, has been published on the phylogeny of the group. Here we present a phylogeny of the siblings based on the sequences of two nuclear genes, period (per) and Alcohol dehydrogenase (Adh), as well as the mitochondrial gene Cytochrome oxidase I (COI). Taken individually, only per has a strong phylogenetic signal supporting a well-resolved phylogeny of the group, and this phylogeny is different from that obtained using allozymes. The COI dataset by itself produces trees that disagree with per, and neither that data nor the Adh data have a strong phylogenetic signal, as indicated by low bootstrap values for all analyses. Combining the Adh and COI datasets results in the same tree as per alone. Combining all three genes results in the same topology, which is strongly supported. Two problematic taxa, D. pavlovskiana and a “Carmody strain,” which were identified as potentially separate species based on reproductive isolation, clearly cluster in the phylogenetic analyses within D. paulistorum and D. equinoxialis, respectively. Thus, there appears to be a conflict between the biological species concept and the phylogenetic species concept.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号