首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Id4 regulates neural progenitor proliferation and differentiation in vivo   总被引:3,自引:0,他引:3  
The mechanisms that determine whether a precursor cell re-enters the cell cycle or exits and differentiates are crucial in determining the types and numbers of cells that constitute a particular organ. Here, we report that Id4 is required for normal brain size, and regulates lateral expansion of the proliferative zone in the developing cortex and hippocampus. In its absence, proliferation of stem cells in the ventricular zone (VZ) is compromised. In early cortical progenitors, Id4 is required for the normal G1-S transition. By contrast, at later ages, ectopically positioned proliferating cells are found in the mantle zone of the Id4-/- cortex. These observations, together with evidence for the premature differentiation of early cortical stem cells, indicate that Id4 has a unique and complex function in regulating neural stem cell proliferation and differentiation.  相似文献   

2.
Abstract: Cell culture techniques, high-resolution in vitro 1H nuclear magnetic resonance (NMR) spectroscopy, and chromatographic analyses were used to compare the properties of purified cell populations derived from the PNS and cortical neurones. Cell cultures were immunocytochemically characterised with specific antibodies to ensure purity of the individual cultures. Spectra of perchloric acid extracts of cultured Schwann cells, perineural fibroblasts, dorsal root ganglion neurones, and cortical neurones displayed several common features. However, statistically significant differences were found by 1H NMR spectroscopy in most metabolites among the cell types studied. In addition, cells could be distinguished by the presence or absence of certain amino acids. For example, N -acetylaspartate was present in dorsal root ganglion neurones and cortical neurones, γ-aminobutyric acid was present in large amounts in cortical neurones, and Schwann cell spectra displayed a large signal from glycine. These results extend our earlier findings that different cell types of the CNS exhibit highly characteristic metabolite profiles to now include the major cell types of the PNS. These latter cell types also exhibit characteristic metabolite compositions, such that even Schwann cells and oligodendrocyte type 2 astrocyte (O-2A) progenitor cells—precursors of the myelinating cells of the CNS and PNS, respectively—can be readily distinguished from each other.  相似文献   

3.
The localization and fine structure of proliferating cells in the hypothalamic preoptic area were studied by light-and electron-microscopic radioautography 1–2 h following single application of 3H-thymidine to adult Rana temporaria taken from their natural habitat in the spring and autumn. 3H-thymidine uptake by proliferating cells was much more pronounced in frogs caught in May/June, i.e., a month after the breeding period (labeled cells represent about 10% of the total ventricular zone cell population), compared to animals caught in mid-September, when it was very low. In both 3H-thymidine treatment groups the vast majority of labeled cells are found exclusively within the preoptic recess ventricular zone. With regard to ultrastructure, it contained proliferating cells of at least 4 types, ranging from immature forms (bipolar stem cells) to more differentiated elements (tanycyte-like ependymoblasts, classical ependymoblasts). All of them showed label over their nuclei indicating that these cells are capable of DNA synthesis and mitosis. The possible role of the preoptic recess ventricular zone as a source of precursor cells for new peptidergic neurosecretory cells, conventional neurons and glial cells in the hypothalamic preoptic area of the adult frog is discussed.  相似文献   

4.
5.
Simultaneous Recording of Input and Output of Lateral Geniculate Neurones   总被引:3,自引:0,他引:3  
TO understand the way in which the cat dorsal lateral geniculate nucleus (LGN) processes visual information it would be useful to know the number and type of retinal inputs to individual LGN neurones. Using electrical stimulation of the optic nerve Bishop et al.1concluded that an impulse in a single optic nerve fibre is sufficient to excite a single LGN neurone. From the appearance of excitatory postsynaptic potentials (EPSPs) recorded essentially intracellularly, Creutzfeldt suggested that LGN neurones are driven by perhaps one2 or a few3 retinal ganglion cells. Hubel and Wiesel4 proposed models of convergence of several retinal inputs on single LGN neurones based on analyses of receptive fields. Guillery5 produced anatomical evidence that some types of LGN neurones receive inputs from several different retinal fibres. Now we report direct observations which were made by recording simultaneously from single LGN neurones and from individual retinal ganglion cells which provided excitatory input to them. We shall not consider inhibitory influences, which are currently under study.  相似文献   

6.
7.
The mammalian cerebral cortex arises from precursor cells that reside in a proliferative region surrounding the lateral ventricles of the developing brain. Recent work has shown that precursor cells in the subventricular zone (SVZ) provide a major contribution to prenatal cortical neurogenesis, and that the SVZ is significantly thicker in gyrencephalic mammals such as primates than it is in lissencephalic mammals including rodents. Identifying characteristics that are shared by or that distinguish cortical precursor cells across mammalian species will shed light on factors that regulate cortical neurogenesis and may point toward mechanisms that underlie the evolutionary expansion of the neocortex in gyrencephalic mammals. We immunostained sections of the developing cerebral cortex from lissencephalic rats, and from gyrencephalic ferrets and macaques to compare the distribution of precursor cell types in each species. We also performed time-lapse imaging of precursor cells in the developing rat neocortex. We show that the distribution of Pax6+ and Tbr2+ precursor cells is similar in lissencephalic rat and gyrencephalic ferret, and different in the gyrencephalic cortex of macaque. We show that mitotic Pax6+ translocating radial glial cells (tRG) are present in the cerebral cortex of each species during and after neurogenesis, demonstrating that the function of Pax6+ tRG cells is not restricted to neurogenesis. Furthermore, we show that Olig2 expression distinguishes two distinct subtypes of Pax6+ tRG cells. Finally we present a novel method for discriminating the inner and outer SVZ across mammalian species and show that the key cytoarchitectural features and cell types that define the outer SVZ in developing primates are present in the developing rat neocortex. Our data demonstrate that the developing rat cerebral cortex possesses an outer subventricular zone during late stages of cortical neurogenesis and that the developing rodent cortex shares important features with that of primates.  相似文献   

8.
In this study, we use three monoclonal antibodies that recognise antigens present in the central nervous system of the ascidian Ciona intestinalis to study regeneration and post-metamorphic development of the neural ganglion. We have also used bromodeoxyuridine labelling to study generation of the neuronal precursor cells. The first antibody, CiN 1, recognises all neurones in the ganglion, whereas the second, CiN 2, recognises only a subpopulation of the large cortical neurones. Western blotting studies show that CiN 2 recognises two membrane-bound glycoproteins of apparent Mr 129 and 100 kDa. CiN 1 is not reactive on Western blots. Immunocytochemical studies with these antibodies show that CiN 1-immunoreactive neurone-like cells are present at the site of regeneration as early as 5–7 days post-ablation, a sub-population of CiN 2-immunoreactive cells being detected by 9–12 days post-ablation. The third antibody, ECM 1, stains extracellular matrix components and recognises two diffuse bands on Western blots of whole-body and ganglion homogenates. The temporal and spatial pattern of appearance of CiN 1 and CiN 2 immunoreactivity both during post-metamorphic development and in regeneration occurs in the same sequence in both processes. Studies with bromodeoxyuridine show labelled nuclei in some neurones in the regenerating ganglion. Plausibly these originate from the dorsal strand, an epithelial tube that reforms by cell proliferation during the initial phases of regeneration. A second population of cells, the large cortical neurones, do not incorporate bromodeoxyuridine and thus must have been born prior to the onset of regeneration. This latter finding indicates a mechanism involving trans-differentiation of other cell types or differentiation of long-lived totipotent stem cells.  相似文献   

9.
Parnavelas JG  Nadarajah B 《Neuron》2001,31(6):881-884
During the development of the cerebral cortex, radial glia serve as a scaffold to support and direct neurons during their migration. This view is now changing in the light of emerging evidence showing that these cells have a much more dynamic and diverse role. A recent series of studies has provided strong support for their role as precursor cells in the ventricular zone that generate cortical neurons and glia, in addition to providing migration guidance.  相似文献   

10.
Cerebral cortical precursor cells reside in a neuroepithelial cell layer that regulates their proliferation and differentiation. Global disruptions in epithelial architecture induced by loss of the adherens junction component αE-catenin lead to hyperproliferation. Here we show that cell autonomous reduction of αE-catenin in the background of normal precursors in vivo causes cells to prematurely exit the cell cycle, differentiate into neurons, and migrate to the cortical plate, while normal neighboring precursors are unaffected. Mechanistically, αE-catenin likely regulates cortical precursor differentiation by maintaining β-catenin signaling, as reduction of αE-catenin leads to reduction of β-catenin signaling in vivo. These results demonstrate that, at the cellular level, αE-catenin serves to maintain precursors in the proliferative ventricular zone, and suggest an unexpected function for αE-catenin in preserving β-catenin signaling during cortical development.  相似文献   

11.
Both neurons and glial cells are derived from neuralprecursor cells in the ventricular zone during braindevelopment. The fate of the neural precursor cells isaffected by neurotransmitters such as glutamate. Inthis study, we examined glutamate-triggeredintracellular Ca2+ signaling in neural precursorcell lines by the calcium digital imaging method. Whenimmortalized primary-cultured neural precursor cellswere treated with glutamate, a subpopulation of thesecells showed an increase in intracellular Ca2+concentration. In an effort to determine the role ofthe glutamate-triggered intracellular Ca2+ signalin neural precursor cells, we tried to cultureimmortalized basal ganglial and hippocampal neuralprecursor cell lines in glutamate-free medium. Thehippocampal (MHP-2) cells became adapted to theglutamate-free medium, and when treated with glutamatethe adapted subline (MHP-2-E1) showed an increase inintracellular Ca2+ concentration. In contrast,the basal ganglial neural precursor cell lines failedto become adapted to the glutamate-free medium. Theseresults suggest that hippocampal and basal ganglialneural precursor cells differ in their cellularresponse to glutamate as an exogenous stimulus.  相似文献   

12.
13.
Morphological studies have shown that excitatory synapses from the cortex constitute the major source of synapses in the thalamus. However, the effect of these corticothalamic synapses on the function of the thalamus is not well understood because thalamic neurones have complex intrinsic firing properties and interact through multiple types of synaptic receptors. Here we investigate these complex interactions using computational models. We show first, using models of reconstructed thalamic relay neurones, that the effect of corticothalamic synapses on relay cells can be similar to that of afferent synapses, in amplitude, kinetics and timing, although these synapses are located in different regions of the dendrites. This suggests that cortical EPSPs may complement (or predict) the afferent information. Second, using models of reconstructed thalamic reticular neurones, we show that high densities of the low-threshold Ca2+ current in dendrites can give these cells an exquisite sensitivity to cortical EPSPs, but only if their dendrites are hyperpolarized. This property has consequences at the level of thalamic circuits, where corticothalamic EPSPs evoke bursts in reticular neurones and recruit relay cells predominantly through feedforward inhibition. On the other hand, with depolarized dendrites, thalamic reticular neurones do not generate bursts and the cortical influence on relay cells is mostly excitatory. Models therefore suggest that the cortical influence can either promote or antagonize the relay of information, depending on the state of the dendrites of reticular neurones. The control of these dendrites may therefore be a determinant of attentional mechanisms. We also review the effect of corticothalamic feedback at the network level, and show how the cortical control over the thalamus is essential in co-ordinating widespread, coherent oscillations. We suggest mechanisms by which different modes of corticothalamic interaction would allow oscillations of very different spatiotemporal coherence to coexist in the thalamocortical system.  相似文献   

14.
The cytoarchitectural simplicity of the cerebral cortex makes it an attractive system to study central nervous system (CNS) histogenesis—the process whereby diverse cells are generated in the right numbers at the appropriate place and time. Recently, multipotent stem cells have been implicated in this process, as progenitor cells for diverse types of cortical neurons and glia. Continuous analysis of stem cell clone development reveals stereotyped division patterns within their lineage trees, highly reminiscent of neural lineage trees in arthropods and Caenorhabditis elegans. Given that these division patterns play a critical part in generating diverse neural types in invertebrates, we speculate that they play a similar role in the cortex. Because stereotyped lineage trees can be observed from cells growing at clonal density, cell-intrinsic factors are likely to have a key role in stem cell behavior. Cortical stem cells also respond to environmental signals to alter the types of cells they generate, providing the means for feedback regulation on the germinal zone. Evidence is accumulating that cortical stem cells, influenced by intrinsic programs and environmental signals, actually change with development—for example, by reducing the number and types of neurons they produce. Age-related changes in the stem cell population may have a critical role in orchestrating development; whether these cells truly self-renew is a point of discussion. In summary, we propose that cortical stem cells are the focus of regulatory mechanisms central to the development of the cortical cytoarchitecture. © 1998 John Wiley & Sons, Inc. J Neurobiol 36: 162–174, 1998  相似文献   

15.
16.
17.
To investigate the relation between cell division and expansion in the regulation of organ growth rate, we used Arabidopsis thaliana primary roots grown vertically at 20°C with an elongation rate that increased steadily during the first 14 d after germination. We measured spatial profiles of longitudinal velocity and cell length and calculated parameters of cell expansion and division, including rates of local cell production (cells mm−1 h−1) and cell division (cells cell−1 h−1). Data were obtained for the root cortex and also for the two types of epidermal cell, trichoblasts and atrichoblasts. Accelerating root elongation was caused by an increasingly longer growth zone, while maximal strain rates remained unchanged. The enlargement of the growth zone and, hence, the accelerating root elongation rate, were accompanied by a nearly proportionally increased cell production. This increased production was caused by increasingly numerous dividing cells, whereas their rates of division remained approximately constant. Additionally, the spatial profile of cell division rate was essentially constant. The meristem was longer than generally assumed, extending well into the region where cells elongated rapidly. In the two epidermal cell types, meristem length and cell division rate were both very similar to that of cortical cells, and differences in cell length between the two epidermal cell types originated at the apex of the meristem. These results highlight the importance of controlling the number of dividing cells, both to generate tissues with different cell lengths and to regulate the rate of organ enlargement.  相似文献   

18.
We examined the role of the orphan nuclear hormone receptor CoupTFI in mediating cortical development downstream of meningeal retinoic acid signaling. CoupTFI is a regulator of cortical development known to collaborate with retinoic acid (RA) signaling in other systems. To examine the interaction of CoupTFI and cortical RA signaling we utilized Foxc1-mutant mice in which defects in meningeal development lead to alterations in cortical development due to a reduction of RA signaling. By analyzing CoupTFI−/−;Foxc1H/L double mutant mice we provide evidence that CoupTFI is required for RA rescue of the ventricular zone and the neurogenic phenotypes in Foxc1-mutants. We also found that overexpression of CoupTFI in Foxc1-mutants is sufficient to rescue the Foxc1-mutant cortical phenotype in part. These results suggest that CoupTFI collaborates with RA signaling to regulate both cortical ventricular zone progenitor cell behavior and cortical neurogenesis.  相似文献   

19.
20.
In records of 219 single units in the posterotemporal cortical area (field 21) of nonanaesthetized cats, 51% of cells reacted to visual stimulation. The neurones had receptive fields (RFs) with central (0-10 degrees) or peripheral (10-52 degrees) localization in the visual field, their size increasing with eccentricity. Carting of RFs by a light bar scanning the visual field revealed a considerable variability of RFs shape, size and orientation in different cells. RFs sizes of the majority of recorded cells (100-1000 grad) were very large and exceeded the size of large RFs of neurones in the primary projection zone of the visual cortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号