首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Control of neuronal development by cellular interactions can be regulated by both extracellular and intracellular calcium. Removal of extracellular calcium affects the differentiation of amphibian spinal neurons in vitro by preventing neuronal calcium influx during the production of calcium-dependent action potentials (Holliday and Spitzer, Dev. Biol. 141:13-23, 1990). However, this culture condition affects differentiation through other mechanisms as well. We have investigated the interaction between neurons and myocytes to distinguish direct effects of low extracellular calcium on neuronal differentiation and indirect effects due to interference with neuron-myocyte interactions. We have examined the initiation of neurite outgrowth and the subsequent extension and orientation of processes. We find that (1) the number of neurons that initiate process outgrowth is reduced by the presence of myocytes in a standard medium containing calcium. Experiments with muscle-conditioned medium indicate that the production and/or secretion of inhibitory cues is calcium dependent. (2) When neurite initiation occurs, neuronal architecture in the absence of myocytes is similar to that in their presence, either in standard or in calcium-free medium, although neurite extension is enhanced by the absence of calcium. (3) Conditioned medium (CM) experiments additionally demonstrate that the orientation of neurite outgrowth to myocyte-derived cues is calcium dependent, although the production of directional cues by myocytes is calcium independent. © 1993 John Wiley & Sons, Inc.  相似文献   

2.
The present experiments addressed the questions of how electrical stimulation influenced the magnitude, time course, and regional levels of free intracellular calcium of different identified neurons. The calcium concentration in the growth cones, neurites and cell bodies of Helisoma buccal neurons B4 and B19 was measured while somata were electrically stimulated via an intracellular electrode. The findings showed that calcium levels in B4 and B19 increased monotonically with increasing stimulation frequency. However, the range of calcium levels evoked by electrical stimulation differed significantly for each type of neuron. The greater increase in calcium concentration in B4 was correlated with its longer duration action potential compared to B19. The increase in calcium concentration was much smaller in the cell bodies than in the growth cones and neurites. Extending the duration of the B19 action potential produced a sixfold increase in the change in calcium concentration at 2 Hz stimulation. Under conditions where the electrical stimulation produced a calcium concentration of < 160 nM, the elevated level of free intracellular calcium remained constant. When calcium concentration increased above 200 nM in both identified neurons, an initial peak concentration was followed by a decline to a lower concentration suggesting increased calcium buffering occurring above 200 nM. By correlating the calcium concentration data herein with growth data from a previous study, we suggest that specific calcium levels that influence neurite outgrowth may differ widely between neurons. © 1997 John Wiley & Sons, Inc. J Neurobiol 32: 150–162, 1997.  相似文献   

3.
This study focuses on the effects of K+ depolarization on neurite elongation of identified Helisoma neurons isolated into culture. Application of K+ to the external medium caused a dose-dependent suppression of neurite elongation. Lower concentrations of K+ were associated with a slowing in the rate of neurite elongation, whereas higher concentrations produced neurite retraction. Surprisingly, the effects of K+ depolarization were transient, and neurite elongation rates recovered towards control levels within 90 min even though the neurons remained in high-K+ solution. Identified neurons differed in the magnitude of their response to K+ depolarization; neurite elongation of buccal neuron B4 was inhibited at 5 mM K+, but elongation in B5 and B19 was not affected until concentrations of 25 mM. Electrophysiologically, K+ application evoked a brief period (5–10 s) of action potential activity that was followed by a steady-state membrane depolarization lasting 2 h or more. The changes in neurite elongation induced by K+ depolarization occurred in isolated growth cones severed from their neurites and were blocked by application of calcium antagonists. Intracellular free Ca2+ levels in growth cones of B4 and B19 increased and then decreased during the 90-min depolarization, corresponding to the changes in elongation. B4 and B19 showed differences in the magnitude, time course, and spatial distribution of the Ca2+ change during depolarization, reflecting their different sensitivities to depolarization.  相似文献   

4.
The accessibility of embryonic and adult neurons within invertebrate nervous systems has made them excellent subjects for neurobiological study. The ability to readily identify individual neurons, together with their great capacity for regeneration, has been especially beneficial to investigations of synapse formation and the specificity of neuronal connectivity. Many invertebrate neurons survive for long periods following isolation into primary cell culture. In addition, they readily extend new neuritic arbors and form electrical and chemical connections at sites of contact. Thus, cell culture approaches have allowed neuroscientists greater access to, and resolution of, events underlying neurite outgrowth and synaptogenesis. Studies of identified neuromuscular synapses ofHelisoma have determined a number of signaling mechanisms involved in transsynaptic communication at sites of neuron-target contact. At these sites, both anterograde and retrograde signals regulate the transformation of growth cones into functional presynaptic terminals. We have found that specific muscle targets induce both global and local changes in neurotransmitter secretion and intracellular calcium handling. Here we review recent studies of culturedHelisoma synapses and discuss the mechanisms thought to govern chemical synapse formation in these identified neurons and those of other invertebrate species.  相似文献   

5.
Neurite extension and branching are affected by activity-dependent modulation of intracellular Ca2+, such that an optimal window of [Ca2+] is required for outgrowth. Our understanding of the molecular mechanisms regulating this optimal [Ca2+]i remains unclear. Taking advantage of the large growth cone size of cultured primary neurons from pond snail Lymnaea stagnalis combined with dsRNA knockdown, we show that neuronal calcium sensor-1 (NCS-1) regulates neurite extension and branching, and activity-dependent Ca2+ signals in growth cones. An NCS-1 C-terminal peptide enhances only neurite branching and moderately reduces the Ca2+ signal in growth cones compared with dsRNA knockdown. Our findings suggest that at least two separate structural domains in NCS-1 independently regulate Ca2+ influx and neurite outgrowth, with the C-terminus specifically affecting branching. We describe a model in which NCS-1 regulates cytosolic Ca2+ around the optimal window level to differentially control neurite extension and branching.  相似文献   

6.
Although it is becoming increasingly clear that structural dynamics on neurite shafts play important roles in establishing neuronal architecture, the underlying mechanisms are unknown. The present study investigates local induction of filopodia along the shafts of neurites, a process that, by analogy to the growth cone, can represent the first stage in the generation of a new neuronal process. We show that filopodia can be induced reliably along the neurite shaft in response to a localized electric field stimulus that evokes large local intracellular calcium increases. Neither induction of filopodia nor a local rise in intracellular calcium occurred in calcium free medium. Although calcium induction of neurite filopodia is highly reliable, forming in response to more than 90% of attempts, it is developmental state-dependent, since neurite filopodia could not be induced in neurons previously defined as “stable state.” We have found two distinct changes in stable state neurons that can decrease the ability to induce new neurites. The first is a reduced calcium response: Field stimulation produced large local rises (280 nM) in stable state neurons. Second, stable state neurons change so that even when the stimulus intensity was increased to elicit a calcium response that would have been sufficient to induce filopodia in growing neurites, neurite filopodia were still not induced. Thus, intracellular calcium plays a key role in structural changes along the shafts of neurites. Furthermore, developmental changes in both calcium homeostatic components, and in calcium responsiveness (i.e., the sensitivity of cellular components that modulate neurite morphology) underlie shifts from plasticity to stability of neuronal architecture in this system. © 1995 John Wiley & Sons, Inc.  相似文献   

7.
The rat CNS neuroblastoma B50 cell line is known to differentiate on addition of 1 mM dibutyryl cyclic AMP or on withdrawal of serum. In this report it is shown that high levels of extracellular calcium (10-25 mM) cause neurite extension, an important component of morphological differentiation. Stimulation of calcium influx with the ionophore A 23187 or blockade of calcium efflux with lanthanum are less efficient than extracellular calcium in stimulating neurite extension. These data suggest that intracellular calcium is not sufficient to cause full expression of a calcium-dependent differentiated state. Furthermore, phosphatidylinositol turnover is sharply altered as early as 1 h after addition of calcium to the medium while cyclic nucleotide levels remain unaffected. This suggests that activation of the phosphatidylinositol second-messenger system by calcium at the level of the cell membrane is the initial step in the cascade of events leading to neurite extension. Later events include a decrease in DNA synthesis (6-10 h after addition of calcium), and increase in intracellular calcium levels (12-24 h after calcium addition) concurrent with neurite extension. The intracellular increase in calcium levels is facilitated by synergistic action of 1 mM dibutyryl cyclic AMP with high external calcium (10-25 mM). This combined treatment results in a more complex pattern of neurite formation characterized by many synaptic-like junctions; this pattern is not obtained when either dibutyryl cyclic AMP or calcium is used as sole inducer.  相似文献   

8.
A fraction of medium conditioned by embryonic mouse heart cells in culture promotes the growth of sympathetic and parasympathetic neurons in vitro. The factor stimulates neurite outgrowth, elevates specific activities of tyrosine hydroxylase and choline acetyltransferase in sympathetic ganglion explants, and enhances survival of dissociated sympathetic neurons in culture. The growth-promoting activity, which has a profound effect on survival of mouse sympathetic and parasympathetic neurons but little effect on mouse sensory neuron survival, is sensitive to trypsin and elevated temperature, suggesting association with a polypeptide or protein. Unlike nerve growth factor (NGF), the conditioned medium fraction is insensitive to anti-NGF antiserum, and fosters growth of mouse parasympathetic neurons. Consequently, the conditioned medium appears to contain a new nerve growth-promoting factor.  相似文献   

9.
Axonogenesis involves a shift from uniform delivery of materials to all neurites to preferential delivery to the putative axon, supporting its more rapid extension. Waves, growth cone‐like structures that propagate down the length of neurites, were shown previously to correlate with neurite growth in dissociated cultured hippocampal neurons. Waves are similar to growth cones in their structure, composition and dynamics. Here, we report that waves form in all undifferentiated neurites, but occur more frequently in the future axon during initial neuronal polarization. Moreover, wave frequency and their impact on neurite growth are altered in neurons treated with stimuli that enhance axonogenesis. Coincident with wave arrival, growth cones enlarge and undergo a marked increase in dynamics. Through their engorgement of filopodia along the neurite shaft, waves can induce de novo neurite branching. Actin in waves maintains much of its cohesiveness during transport whereas actin in nonwave regions of the neurite rapidly diffuses as measured by live cell imaging of photoactivated GFP‐actin and photoconversion of Dendra‐actin. Thus, waves represent an alternative axonal transport mechanism for actin. Waves also occur in neurons in organotypic hippocampal slices where they propagate along neurites in the dentate gyrus and the CA regions and induce branching. Taken together, our results indicate that waves are physiologically relevant and contribute to axon growth and branching via the transport of actin and by increasing growth cone dynamics. © 2009 Wiley Periodicals, Inc. Develop Neurobiol 2009  相似文献   

10.
Neurons exhibit a remarkable plasticity of form, both during neural development and during the subsequent remodelling of synaptic connectivity. Here we review work on GAP-43 and G0, and focus upon the thesis that their interaction may endow neurons with such plasticity. We also present new data on the role of G proteins in neurite growth, and on the interaction of GAP-43 and actin. GAP-43 is a protein induced during periods of axonal extension and highly enriched on the inner surface of the growth cone membrane. Its membrane localization is primarily due to a short amino terminal sequence which is subject to palmitoylation. Binding to actin filaments may also assist in restricting the protein to specific cellular domains. Consistent with its role as a ?plasticity protein,”? there is evidence that GAP-43 can directly alter cell shape and neurite extension, and several theses have been advanced for how it might do so. Two other prominent components of the growth cone membrane are the α and β subunits of G0. GAP-43 regulates their guanine nucleotide exchange, which is an unusual role for an intracellular protein. We speculate that GAP-43 may adjust the ?set point”? of responsiveness for G0 stimulation by receptors, thereby altering the neuronal propensity to growth, without actually causing growth. To begin to address how G protein activity affects axon growth, we have developed a means to introduce guanine nucleotide analogs into sympathetic neurons. Stimulation of G proteins with GTP-γ-S retards axon growth, whereas GDP-β-S enhances it. This is compatible with G protein registration of inhibitory signals. © 1992 John Wiley & Sons, Inc.  相似文献   

11.
GAP-43 as a plasticity protein in neuronal form and repair.   总被引:13,自引:0,他引:13  
Neurons exhibit a remarkable plasticity of form, both during neural development and during the subsequent remodelling of synaptic connectivity. Here we review work on GAP-43 and G0, and focus upon the thesis that their interaction may endow neurons with such plasticity. We also present new data on the role of G proteins in neurite growth, and on the interaction of GAP-43 and actin. GAP-43 is a protein induced during periods of axonal extension and highly enriched on the inner surface of the growth cone membrane. Its membrane localization is primarily due to a short amino terminal sequence which is subject to palmitoylation. Binding to actin filaments may also assist in restricting the protein to specific cellular domains. Consistent with its role as a "plasticity protein," there is evidence that GAP-43 can directly alter cell shape and neurite extension, and several theses have been advanced for how it might do so. Two other prominent components of the growth cone membrane are the alpha and beta subunits of G0. GAP-43 regulates their guanine nucleotide exchange, which is an unusual role for an intracellular protein. We speculate that GAP-43 may adjust the "set point" of responsiveness for G0 stimulation by receptors, thereby altering the neuronal propensity to growth, without actually causing growth. To begin to address how G protein activity affects axon growth, we have developed a means to introduce guanine nucleotide analogs into sympathetic neurons. Stimulation of G proteins with GTP-gamma-S retards axon growth, whereas GDP-beta-S enhances it. This is compatible with G protein registration of inhibitory signals.  相似文献   

12.
Embryonic cultured Xenopus spinal neurons generate two types of spontaneous elevation of intracellular calcium that encode developmental information in the frequency with which they are produced. Calcium spikes regulate the appearance of GABA and maturation of potassium current. Calcium waves in growth cones regulate neurite extension. Spikes and waves are also observed in neurons differentiating in situ. Because differentiation is dependent on the frequency of calcium transients, neurons that are coactive and fire spikes in concert would be expected to differentiate together. Consistent with this prediction, segmentally arrayed clusters of putative motoneurons on the ventral aspect of the neural tube fire together during development.  相似文献   

13.
14.
Ca(2+) regulates a spectrum of cellular processes including many aspects of neuronal function. Ca(2+)-sensitive events such as neurite extension and axonal guidance are driven by Ca(2+) signals that are precisely organized in both time and space. These complex cues result from both Ca(2+) influx across the plasma membrane and the mobilization of intracellular Ca(2+) stores. In the present study, using rat cortical neurons, we have examined the effects of the novel intracellular Ca(2+)-mobilizing messenger nicotinic acid adenine dinucleotide phosphate (NAADP) on neurite length and cytosolic Ca(2+) levels. We show that NAADP potentiates neurite extension in response to serum and nerve growth factor and stimulates increases in cytosolic Ca(2+) from bafilomycin-sensitive Ca(2+) stores. Simultaneous blockade of inositol trisphosphate and ryanodine receptors abolished the effects of NAADP on neurite length and reduced the magnitude of NAADP-mediated Ca(2+) signals. This is the first report demonstrating functional NAADP receptors in a mammalian neuron. Interplay between NAADP receptors and more established intracellular Ca(2+) channels may therefore play important signaling roles in the nervous system.  相似文献   

15.
Axon growth-promoting and -inhibitory molecules are likely to work in concert to promote and guide axons in vivo. In adult mammals, inhibitory molecules associated with myelin in the white matter of the central nervous system (CNS) play an important role in the failure of long-distance axon regeneration. The presence of neurite growth-inhibitory molecules in the adult rat gray matter has not been extensively studied. In this article we describe work on the characterization of neurite growth-inhibitory activity in the adult rat cerebral cortical gray matter using various biochemical and cell culture approaches. We show using a neuronal cell line (NG108–-15 cells) that neurite growth-inhibitory activity is present in membrane preparations of the cortical gray matter. Purified gray matter membranes also induce growth cone collapse of cultured embryonic rat dorsal root ganglion neurons. The inhibitory activity in the membrane preparations is extractable with 3-[(3-cholamidoprophyl)-dimethylammonio]-1-propane-sulfonate, but does not appear to be depleted by various lectins. Western blots and enzyme treatments showed that the inhibitory effect of the gray-matter preparations is not likely to be mediated by myelin-associated inhibitors or chondroitin sulfate proteoglycans. However, tenascin was detected in these samples and may contribute to some of the inhibitory activity. Selective separation of the inhibitory molecules can be achieved by ion-exchange chromatography, which also suggests the presence of multiple inhibitors in cortical gray matter membranes. © 1997 John Wiley & Sons, Inc. J Neurobiol 32 : 671–683, 1997  相似文献   

16.
Previous findings indicate that spatial restriction of intracellular calcium levels within growth cones can regulate growth cone behavior at many levels, ranging from filopodial disposition to neurite extension. By combining techniques for focal stimulation of growth cones with those for measurement of filopodia and for capturing low intensity calcium signals, we demonstrate that filopodia on individual growth cones can respond to imposed stimuli independently from one another. Moreover, filopodia and their parent growth cones appear to represent functionally and morphologically distinct domains of calcium regulation, possessing distinct calcium sources and sinks. Both are sensitive to calcium influx; however, application of the calcium ionophore A23187 to cells in calcium-free medium demonstrated the presence of potential intracellular calcium pools in the growth cone proper, but not in isolated filopodia. Thapsigargin significantly reduced the rise in growth cone calcium levels associated with excitatory neurotransmitters, further implicating release from calcium pools as one component of growth cone calcium regulation. The relative contributions of these pools were examined in response to excitatory neurotransmitters by quantitative calcium measurements made in both growth cones and isolated filopodia. Striking differences were observed; filopodia were sensitive to a low concentration of dopamine and serotonin, while growth cones displayed an amplified rise at a higher concentration. The spatial distribution of organelles that could serve as morphological correlates to such calcium amplification was examined using confocal microscopy. While the majority of organelles were located in the central core of the growth cone proper, peripheral organelles were detected at the base of a subset of filopodia. The distinctive distribution of calcium regulation within motile growth cones suggests one mechanism by which growth cones may regulate their complex behavior. © 1996 John Wiley & Sons, Inc.  相似文献   

17.
We investigated the effects of calcium removal and calcium ionophores on the behavior and ultrastructure of cultured chick dorsal root ganglia (DRG) neurons to identify possible mechanisms by which calcium might regulate neurite outgrowth. Both calcium removal and the addition of calcium ionophores A23187 or ionomycin blocked outgrowth in previously elongating neurites, although in the case of calcium ionophores, changes in growth cone shape and retraction of neurites were also observed. Treatment with calcium ionophores significantly increased growth cone calcium. The ability of the microtubule stabilizing agent taxol to block A23187-induced neurite retraction and the ability of the actin stabilizing agent phalloidin to reverse both A23187-induced growth cone collapse and neurite retraction suggested that calcium acted on the cytoskeleton. Whole mount electron micrographs revealed an apparent disruption of actin filaments in the periphery (but not filopodia) of growth cones that were exposed to calcium ionophores in medium with normal calcium concentrations. This effect was not seen in cells treated with calcium ionophores in calcium-free medium or cells treated with the monovalent cation ionophore monensin, indicating that these effects were calcium specific. Ultrastructure of Triton X-100 extracted whole mounts further indicated that both microtubules and microfilaments may be more stable or extraction resistant after treatments which lower intracellular calcium. Taken together, the data suggest that calcium may control neurite elongation at least in part by regulating actin filament stability, and support a model for neurite outgrowth involving a balance between assembly and disassembly of the cytoskeleton.  相似文献   

18.
Molluscan neurons and muscle cells express transient (T-type like) and sustained LVA calcium channels, as well as transient and sustained HVA channels. In addition weakly voltage sensitive calcium channels are observed. In a number of cases toxin or dihydropyridine sensitivity justifies classification of the HVA currents in L, N or P-type categories. In many cases, however, pharmacological characterization is still preliminary. Characterization of novel toxins from molluscivorousConus snails may facilitate classification of molluscan calcium channels. Molluscan preparations have been very useful to study calcium dependent inactivation of calcium channels. Proposed mechanisms explain calcium dependent inactivation through direct interaction of Ca2+ with the channel, through dephosphorylation by calcium dependent phosphatases or through calcium dependent disruption of connections with the cytoskeleton. Transmitter modulation operating through various second messenger mediated pathways is well documented. In general, phosphorylation through PKA, cGMP dependent PK or PKC facilitates the calcium channels, while putative direct G-protein action inhibits the channels. Ca2+ and cGMP may inhibit the channels through activation of phosphodiesterases or phosphatases. Detailed evidence has been provided on the role of sustained LVA channels in pacemaking and the generation of firing patterns, and on the role of HVA channels in the dynamic changes in action potentials during spiking, the regulation of the release of transmitters and hormones, and the regulation of growth cone behavior and neurite outgrowth. The accessibility of molluscan preparations (e.g. the squid giant synapse for excitation release studies,Helisoma B5 neuron for neurite and synapse formation) and the large body of knowledge on electrophysiological properties and functional connections of identified molluscan neurons (e.g. sensory neurons, R15, egg laying hormone producing cells, etc.) creates valuable opportunities to increase the insight into the functional roles of calcium channels.  相似文献   

19.
Coordinated control of the growth cone cytoskeleton underlies axon extension and guidance. Members of the collapsin response mediator protein (CRMP) family of cytosolic phosphoproteins regulate the microtubule and actin cytoskeleton, but their roles in regulating growth cone dynamics remain largely unexplored. Here, we examine how CRMP4 regulates the growth cone cytoskeleton. Hippocampal neurons from CRMP4−/− mice exhibited a selective decrease in axon extension and reduced growth cone area, whereas overexpression of CRMP4 enhanced the formation and length of growth cone filopodia. Biochemically, CRMP4 can impact both microtubule assembly and F-actin bundling in vitro. Through a structure function analysis of CRMP4, we found that the effects of CRMP4 on axon growth and growth cone morphology were dependent on microtubule assembly, whereas filopodial extension relied on actin bundling. Intriguingly, anterograde movement of EB3 comets, which track microtubule protrusion, slowed significantly in neurons derived from CRMP4−/− mice, and rescue of microtubule dynamics required CRMP4 activity toward both the actin and microtubule cytoskeleton. Together, this study identified a dual role for CRMP4 in regulating the actin and microtubule growth cone cytoskeleton.  相似文献   

20.
A prior peripheral nerve injury in vivo, promotes a rapid elongated mode of sensory neurons neurite regrowth in vitro. This in vitro model of conditioned axotomy allows analysis of the cellular and molecular mechanisms leading to an improved neurite re-growth. Our differential interference contrast microscopy and immunocytochemistry results show that conditioned axotomy, induced by sciatic nerve injury, did not increase somatic size of adult lumbar sensory neurons from mice dorsal root ganglia sensory neurons but promoted the appearance of larger neurites and growth cones. Using atomic force microscopy on live neurons, we investigated whether membrane mechanical properties of growth cones of axotomized neurons were modified following sciatic nerve injury. Our data revealed that neurons having a regenerative growth were characterized by softer growth cones, compared to control neurons. The increase of the growth cone membrane elasticity suggests a modification in the ratio and the inner framework of the main structural proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号