首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
植物泛素/26S蛋白酶体途径研究进展   总被引:6,自引:0,他引:6  
泛素/26S蛋白酶体途径是最重要的,有高度选择性的蛋白质降解途径,由泛素激活酶、泛素结合酶、泛素蛋白连接酶和26S蛋白酶体组成,参与调控植物生长发育的多个方面。泛素蛋白酶体途径参与植物体内的众多生理过程,如植物激素信号,光形态建成、自交不亲和反应和细胞周期等。本文就泛素/26S蛋白酶体途径以及在植物生长发育中的作用的研究近况做一综述。  相似文献   

2.
The ubiquitin-proteasome pathway (UPP) is the primary cytosolic proteolytic machinery for the selective degradation of various forms of damaged proteins. Thus, the UPP is an important protein quality control mechanism. In the canonical UPP, both ubiquitin and the 26S proteasome are involved. Substrate proteins of the canonical UPP are first tagged by multiple ubiquitin molecules and then degraded by the 26S proteasome. However, in noncanonical UPP, proteins can be degraded by the 26S or the 20S proteasome without being ubiquitinated. It is clear that a proteasome is responsible for selective degradation of oxidized proteins, but the extent to which ubiquitination is involved in this process remains a subject of debate. Whereas many publications suggest that the 20S proteasome degrades oxidized proteins independent of ubiquitin, there is also solid evidence indicating that ubiquitin and ubiquitination are involved in degradation of some forms of oxidized proteins. A fully functional UPP is required for cells to cope with oxidative stress and the activity of the UPP is also modulated by cellular redox status. Mild or transient oxidative stress up-regulates the ubiquitination system and proteasome activity in cells and tissues and transiently enhances intracellular proteolysis. Severe or sustained oxidative stress impairs the function of the UPP and decreases intracellular proteolysis. Both the ubiquitin-conjugating enzymes and the proteasome can be inactivated by sustained oxidative stress, especially the 26S proteasome. Differential susceptibilities of the ubiquitin-conjugating enzymes and the 26S proteasome to oxidative damage lead to an accumulation of ubiquitin conjugates in cells in response to mild oxidative stress. Thus, increased levels of ubiquitin conjugates in cells seem to be an indicator of mild oxidative stress.  相似文献   

3.
泛素化介导的非蛋白质降解功能   总被引:2,自引:0,他引:2  
泛素因标记被26 S蛋白酶体降解的蛋白质而著名.然而近几年发现,泛素作用远不止此,不仅具有参与蛋白质降解这一重要“传统作用”,还起着比先前想象更多变的、更精美的细胞调控作用,是非常重要的细胞过程的多层面调节因子,具有许多重要的非蛋白质降解功能,包括DNA损伤修复、DNA复制、信号传导、转录调节、膜运输、胞吞、蛋白激酶活化、染色质重塑和病毒芽殖.这些功能涉及多聚泛素化和单泛素化及多泛素化.因此,泛素化异常可能涉及疾病的发生和发展.对这些功能的了解可以拓展人们对泛素的认识,有助于对多种细胞过程的深入理解,也有助于相关新药的研发.  相似文献   

4.
Mutations in the Park2 gene, encoding the RING-HECT hybrid E3 ubiquitin ligase parkin, are responsible for a common familial form of Parkinson disease. By mono- and polyubiquitinating target proteins, parkin regulates various cellular processes, including degradation of proteins within the 26 S proteasome, a large multimeric degradation machine. In our attempt to further elucidate the function of parkin, we have identified the proteasomal ubiquitin receptor Rpn13/ADRM1 as a parkin-interacting protein. We show that the N-terminal ubiquitin-like (Ubl) domain of parkin binds directly to the pleckstrin-like receptor for ubiquitin (Pru) domain within Rpn13. Using mutational analysis and NMR, we find that Pru binding involves the hydrophobic patch surrounding Ile-44 in the parkin Ubl, a region that is highly conserved between ubiquitin and Ubl domains. However, compared with ubiquitin, the parkin Ubl exhibits greater than 10-fold higher affinity for the Pru domain. Moreover, knockdown of Rpn13 in cells increases parkin levels and abrogates parkin recruitment to the 26 S proteasome, establishing Rpn13 as the major proteasomal receptor for parkin. In contrast, silencing Rpn13 did not impair parkin recruitment to mitochondria or parkin-mediated mitophagy upon carbonyl cyanide m-chlorophenyl hydrazone-induced mitochondrial depolarization. However, it did delay the clearance of mitochondrial proteins (TIM23, TIM44, and TOM20) and enhance parkin autoubiquitination. Taken together, these findings implicate Rpn13 in linking parkin to the 26 S proteasome and regulating the clearance of mitochondrial proteins during mitophagy.  相似文献   

5.
The 26S proteasome is the molecular machine at the center of the ubiquitin proteasome system and is responsible for adjusting the concentrations of many cellular proteins. It is a drug target in several human diseases, and assays for the characterization of modulators of its activity are valuable. The 26S proteasome consists of two components: a core particle, which contains the proteolytic sites, and regulatory caps, which contain substrate receptors and substrate processing enzymes, including six ATPases. Current high-throughput assays of proteasome activity use synthetic fluorogenic peptide substrates that report directly on the proteolytic activity of the proteasome, but not on the activities of the proteasome caps that are responsible for protein recognition and unfolding. Here, we describe a simple and robust assay for the activity of the entire 26S proteasome using fluorescence anisotropy to follow the degradation of fluorescently labeled protein substrates. We describe two implementations of the assay in a high-throughput format and show that it meets the expected requirement of ATP hydrolysis and the presence of a canonical degradation signal or degron in the target protein.  相似文献   

6.
The ubiquitin/26S proteasome pathway is a basic biological mechanism involved in the regulation of a multitude of cellular processes. Increasing evidence indicates that plants utilize the ubiquitin/26S proteasome pathway in their immune response to pathogen invasion, emphasizing the role of this pathway during plant–pathogen interactions. The specific functions of proteasomal degradation in plant–pathogen interactions are diverse, and do not always benefit the host plant. Although in some cases, proteasomal degradation serves as an effective barrier to help plants ward off pathogens, in others, it is used by the pathogen to enhance the infection process. This review discusses the different roles of the ubiquitin/26S proteasome pathway during interactions of plants with pathogenic viruses, bacteria, and fungi.  相似文献   

7.
Modification of proteins by the covalent attachment of ubiquitin is a key regulatory mechanism of many cellular processes including protein degradation by the 26S proteasome. Deubiquitination, reversal of this modification, must also regulate the fate and function of ubiquitin-conjugated proteins. Deubiquitinating enzymes catalyze the removal of ubiquitin from ubiquitin-conjugated substrate proteins as well as from its precursor proteins. Deubiquitinating enzymes occupy the largest family of enzymes in the ubiquitin system, implying their diverse function in regulation of the ubiquitin-mediated pathways. Here we explore the diversity of deubiquitinating enzymes and their emerging roles as cellular regulators.  相似文献   

8.
9.
The 26 S proteasome is the eukaryotic protease responsible for the degradation of most cellular proteins. As such it accommodates the ability to function under diverse conditions that the cell may encounter. This function is supported by various adaptors that modulate various aspects in protein degradation, these include regulation of substrate delivery, deubiquitination, unfolding, and 20 S gate dilation. Here we show a new functional complex between the P97 and the proteasome that is assembled in response to proteasomal impairment. This entails P97 binding to the 26 S proteasome via the 19 S particle thereby forming an additional hexameric ATPase ring to relieve repression. P97-bound proteasomes showed selective binding toward the Npl4-ufd1 P97 co-factors, indicating a unique cellular role for P97 binding to proteasomes. P97-bound proteasomes display enhanced activity, showing a relief in proteolysis impairment. Our findings place P97 directly in non-ERAD proteasomal functions and establish a new checkpoint in UPS impairment. The ability to modulate proteasome activity and properly respond to protein misfolding, is of great importance in cellular regulation.  相似文献   

10.
Ubiquitin- and proteasome-dependent proteolysis in plants   总被引:9,自引:0,他引:9  
  相似文献   

11.
Intracellular proteolysis plays an important role in regulating fundamental cellularprocesses such as cell cycle, immune and inflammation responses, development,differentiation, and transformation. The ubiquitin-proteasome system accounts for thedegradation of the majority of cellular short-lived proteins. This system involves theconjugation of multiple ubiquitin residues to the target protein and its recognition by the26S proteasome through the poly-ubiquitin chain. Studies on the degradation of ornithinedecarboxylase (ODC) demonstrated that poly-ubiquitin is not the only signal recognizedby the 26S proteasome. The recognition of ODC by the 26S proteasome is mediated byinteraction with a polyamine-induced protein termed, antizyme (Az). While thedegradation of ODC is ubiquitin-independent, the degradation of its regulator Az, and ofantizyme-inhibitor (AzI), an ODC homologous protein that regulates Az availability, areubiquitin dependent. Interestingly, ODC undergoes another type of ubiquitin-independentdegradation by the 20S proteasome that is regulated by NAD(P)H quinoneoxidoreductase 1 (NQO1). Considering the prevalence of the ubiquitin system in theprocess of cellular protein degradation it is rather remarkable that a key cellular enzymeis subjected to two different proteolytic pathways that are different from the ubiquitindependent one. This exceptional behavior of ODC provides us with valuable insightsregarding protein degradation in general.  相似文献   

12.
The family of ubiquitin-like (UBL) domain proteins (UDPs) comprises a conserved group of proteins involved in a multitude of different cellular activities. However, recent studies on UBL-domain proteins indicate that these proteins appear to share a common property in their ability to interact with 26S proteasomes. The 26S proteasome is a multisubunit protease which is responsible for the majority of intracellular proteolysis in eukaryotic cells. Before degradation commences most proteins are first marked for destruction by being coupled to a chain of ubiquitin molecules. Some UBL-domain proteins catalyse the formation of ubiquitin-protein conjugates, whereas others appear to target ubiquitinated proteins for degradation and interact with chaperones. Hence, by binding to the 26S proteasome the UBL-domain proteins seem to tailor and direct the basic proteolytic functions of the particle to accommodate various cellular substrates.  相似文献   

13.
Proteasomes are responsible for the turnover of most cellular proteins, and thus are critical to almost all cellular activities. A substrate entering the proteasome must first bind to a substrate receptor. Substrate receptors can be classified as ubiquitin receptors and non‐ubiquitin receptors. The intrinsic ubiquitin receptors, including proteasome regulatory particle base subunits 1, 10 and 13 (Rpn1, Rpn10, and Rpn13), determine the capability of the proteasome to recognize a ubiquitin chain, and thus provide selectivity for the 26S proteasome. However, the non‐ubiquitin receptors, including proteasome activator 200 (PA200) and PA28γ, have received great attention due to their remarkable compensatory roles relative to canonical ubiquitin‐mediated proteasomal degradation. Herein we review recent advances in understanding the contributions of these substrate receptors to proteasomal degradation, and introduce their substrates and interacting factors. We also provide insights into their biological functions related to spermatogenesis, immune responses, cellular homeostasis, and tumour development. Finally, we summarize advances in developing small‐molecule inhibitors of these substrate receptors and discuss their potential as drug targets.  相似文献   

14.
15.
Degradation of cellular proteins via the ubiquitin-proteasome system (UPS) involves: (i) generation of a substrate-anchored polyubiquitin degradation signal and (ii) destruction of the tagged protein by the 26S proteasome with release of free and reusable ubiquitin. For most substrates, it is believed that the first ubiquitin moiety is conjugated to a epsilon-NH(2) group of an internal Lys residue. Recent findings indicate that for several proteins, the first ubiquitin moiety is fused, in a linear manner, to the free alpha-NH(2) group of the protein. Here, we demonstrate that the inhibitor of differentiation (or inhibitor of DNA binding) 2, Id2, that downregulates gene expression in undifferentiated and self-renewing cells, is degraded by the UPS following ubiquitination at its N-terminal residue. Lysine-less (LL) Id2 is degraded efficiently by the proteasome following ubiquitination. Fusion of a Myc tag to the N-terminal but not to the C-terminal residue of Id2 stabilizes the protein. Furthermore, deletion of the first 15 N-terminal residues of Id2 stabilizes the protein, suggesting that this domain serves as a recognition element, possibly for the ubiquitin ligase, E3. The mechanisms and structural motives that govern Id2 stability may have important implications to the regulation of the protein during normal differentiation and malignant transformation.  相似文献   

16.
Protein degradation is a physiological process required to maintain cellular functions. There are distinct proteolytic systems for different physiological tasks under changing environmental and pathophysiological conditions. The proteasome is responsible for the removal of oxidatively damaged proteins in the cytosol and nucleus. It has been demonstrated that proteasomal degradation increases due to mild oxidation, whereas at higher oxidant levels proteasomal degradation decreases. Moreover, the proteasome itself is affected by oxidative stress to varying degrees. The ATP-stimulated 26S proteasome is sensitive to oxidative stress, whereas the 20S form seems to be resistant. Non-degradable protein aggregates and cross-linked proteins are able to bind to the proteasome, which makes the degradation of other misfolded and damaged proteins less efficient. Consequently, inhibition of the proteasome has dramatic effects on cellular aging processes and cell viability. It seems likely that during oxidative stress cells are able to keep the nuclear protein pool free of damage, while cytosolic proteins may accumulate. This is because of the high proteasome content in the nucleus, which protects the nucleus from the formation and accumulation of non-degradable proteins. In this review we highlight the regulation of the proteasome during oxidative stress and aging.  相似文献   

17.
Mechanism and function of deubiquitinating enzymes   总被引:2,自引:0,他引:2  
Attachment of ubiquitin to proteins is a crucial step in many cellular regulatory mechanisms and contributes to numerous biological processes, including embryonic development, the cell cycle, growth control, and prevention of neurodegeneration. In these diverse regulatory settings, the most widespread mechanism of ubiquitin action is probably in the context of protein degradation. Polyubiquitin attachment targets many intracellular proteins for degradation by the proteasome, and (mono)ubiquitination is often required for down-regulating plasma membrane proteins by targeting them to the vacuole (lysosome). Ubiquitin-protein conjugates are highly dynamic structures. While an array of enzymes directs the conjugation of ubiquitin to substrates, there are also dozens of deubiquitinating enzymes (DUBs) that can reverse the process. Several lines of evidence indicate that DUBs are important regulators of the ubiquitin system. These enzymes are responsible for processing inactive ubiquitin precursors, proofreading ubiquitin-protein conjugates, removing ubiquitin from cellular adducts, and keeping the 26S proteasome free of inhibitory ubiquitin chains. The present review focuses on recent discoveries that have led to a better understanding the mechanisms and physiological roles of this diverse and still poorly understood group of enzymes. We also discuss briefly some of the proteases that act on ubiquitin-like protein (UBL) conjugates and compare them to DUBs.  相似文献   

18.
26S proteasome is a large multi-subunit protein complex involved in proteolytic degradation of proteins. In addition to its canonical proteolytic activity, the proteasome is also associated with recently characterized endoribonuclease (endo-RNAse) activity. However, neither functional significance, nor the mechanisms of its regulation are currently known. In this report, we show that 26S proteasome is able to hydrolyze various cellular RNAs, including AU-rich mRNA of c-myc and c-fos. The endonucleolytic degradation of these mRNAs is exerted by one of the 26S proteasome subunits, PSMA5 (α5). The RNAse activity of 26S proteasome is differentially affected by various extra-cellular signals. Moreover, this activity contributes to the process of degradation of c-myc mRNA during induced differentiation of K562 cells, and may be controlled by phosphorylation of the adjacent subunits, PSMA1 (α6) and PSMA3 (α7). Collectively, the data presented in this report suggest a causal link between cell signalling pathways, endo-RNAse activity of the 26S proteasome complex and metabolism of cellular RNAs.  相似文献   

19.
Selective proteolysis is one of the mechanisms for the maintenance of cell homeostasis via rapid degradation of defective polypeptides and certain short-lived regulatory proteins. In prokaryotic cells, high-molecular-mass oligomeric ATP-dependent proteases are responsible for selective protein degradation. In eukaryotes, most polypeptides are attacked by the multicatalytic 26S proteasome, and the degradation of the majority of substrates involves their preliminary modification with the protein ubiquitin. The proteins undergoing the selective proteolysis often contain specific degradation signals necessary for their recognition by the corresponding proteases.  相似文献   

20.
The general function of the ubiquitylation systems is to conjugate ubiquitin to lysine residues within substrate proteins, thus targeting them for degradation by the proteasome. In Arabidopsis thaliana more than 1300 genes (approximately 5% of the proteome) encode components of the ubiquitin/26S proteasome pathway. Approximately 90% of these genes encode subunits of the E3 ubiquitin ligases, which confer substrate specificity to the ubiquitin/26S proteasome pathway. The plant E3 ubiquitin ligases comprise a large and diverse family of proteins or protein complexes containing either a HECT domain, a RING-finger or U-box domain. The SCF class of E3 ligases is the most thoroughly studied in plants because some of them participate in regulation of hormone signaling pathways. The role of the SCF is to ubiquitylate repressors of hormone response (auxin, gibberellins), whereas in response to ethylene, abscisic acid and brassinosteroids the SCF participate in degradation of positive regulators in the absence of the hormone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号