首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 The mechanism of early dorso-ventral axis specification in zebrafish embryos is not well understood. While β-catenin has been clearly implicated as a determinant of the axis, the factors upstream and downstream of β-catenin in this system are not defined. Unlike in Xenopus, where a sperm-induced cortical rotation is used to localize β-catenin on the future dorsal side of the embryo, zebrafish do not have an obviously similar morphogenetic movement. Recently, a GSK-3 (Glycogen Synthase Kinase-3) binding protein (GBP) was identified as a novel member of the Wnt pathway required for maternal dorsal axis formation in Xenopus. GBP stabilizes β-catenin levels by inhibiting GSK-3 and potentially provides a link between cortical rotation and β-catenin regulation. Since zebrafish may use a different mechanism for regulating β-catenin, we asked whether zebrafish also express a maternal GBP. We report the isolation of the zebrafish GBP gene and show that it is maternally expressed and is present as mRNA ubiquitously throughout early embryonic development. Over-expression of zebrafish GBP in frogs and fish leads to hyper-dorsalized phenotypes, similar to the effects resulting from over-expression of β-catenin, indicating that components upstream of β-catenin are conserved between amphibians and teleosts. We also examined whether Tcf (T cell factor) functions in zebrafish embryos. As in frogs, ectopic expression of a dominant negative form of XTcf-3 ventralizes zebrafish embryos. In addition, ectopic β-catenin expression activates the promoter of the Tcf-dependent gene siamois, indicating that the step immediately downstream of β-catenin is also conserved between fish and frogs. Received: 23 July 1998 / Accepted: 2 September 1998  相似文献   

2.
3.
Drosophila metalloproteinase Tolloid (TLD) is responsible for cleaving the antagonist Short gastrulation (SOG), thereby regulating signaling by the bone morphogenetic protein (BMP) Decapentaplegic (DPP). In mice there are four TLD-related proteinases, two of which, BMP1 and mammalian Tolloid-like 1 (mTLL1), are responsible for cleaving the SOG orthologue Chordin, thereby regulating signaling by DPP orthologues BMP2 and 4. However, although TLD mutations markedly dorsalize Drosophila embryos, mice doubly homozygous null for BMP1 and mTLL1 genes are not dorsalized in early development. Only a single TLD-related proteinase has previously been reported for zebrafish, and mutation of the zebrafish TLD gene (mini fin) results only in mild dorsalization, manifested by loss of the most ventral cell types of the tail. Here we identify and map the zebrafish BMP1 gene bmp1. Knockdown of BMP1 expression results in a mild tail phenotype. However, simultaneous knockdown of mini fin and bmp1 results in severe dorsalization resembling the Swirl (swr) and Snailhouse (snh) phenotypes; caused by defects in major zebrafish ventralizing genes bmp2b and bmp7, respectively. We conclude that bmp1 and mfn gene products functionally overlap and are together responsible for a key portion of the Chordin processing activity necessary to formation of the zebrafish dorsoventral axis.  相似文献   

4.
Summary Mutations of the homeotic gene fork head (fkh) of Drosophila transform the non-segmented terminal regions of the embryonic ectoderm into segmental derivatives: Pre-oral head structures and the foregut are replaced by post-oral head structures which are occasionally associated with thoracic structures. Posterior tail structures including the hindgut and the Malpighian tubules are replaced by post-oral head structures associated with anterior tail structures. The fkh gene shows no maternal effect and is required only during embryogenesis. The phenotypes of double mutants indicate that fkh acts independently of other homeotic genes (ANT-C, BX-C, spalt) and caudal. In addition, the fkh domains are not expanded in Polycomb (Pc) group mutant embryos. Ectopic expression of the homeotic selector genes of the ANT-C and BX-C in Pc group mutant embryos causes segmental transformations in terminal regions of the embryo only in the absence of fkh gene activity. Thus, fkh is a region-specific homeotic rather than a selector gene, which promotes terminal as opposed to segmental development. Offprint requests to: Institut für Biologie II (Genetik), Universität Tübingen, Auf der Morgenstelle 28, D-7400 Tübingen, Federal Republic of Germany  相似文献   

5.
To test for the presence of polarizing mesoderm in an amphibian, Xenopus laevis hindlimb bud tips were rotated 180° on the proximodistal axis and returned to the stump. Supernumerary outgrowths were induced in the preaxial stump and preaxial tip tissues, and the most postaxial digit always formed next to the grafted postaxial tissue. The occurrence of polarized supernumerary outgrowths indicated that the posterior limb border contained a polarizing zone. When the limb tip was cut at varying known lengths from the body wall, rotated, and grafted to the limb stump, the incidence of twinning along the proximodistal axis permitted insight into the distribution of the polarizing zone along the posterior border. The location of polarizing tissues was found to be similar to that in the chick wing bud at comparable stages. To confirm the posterior border stump influence on the rotated preaxial limb tip tissues, 180° tip rotations were made at the proximodistal level with the highest incidence of twinning. In these cases, the adjacent stump posterior border tissues (polarizing zone) were removed, leaving a substantial amount of the deeper postaxial stump tissue, however. The frequency of twinning from tip tissues was greatly reduced in these larvae compared to those with rotated limb tips on intact stumps. Cytological examination of supernumerary outgrowths resulting from grafts of two-nucleolate tips onto one-nucleolate stumps confirmed the preaxial source of the supernumerary outgrowths.  相似文献   

6.
Vertebrate Hox clusters contain protein-coding genes that regulate body axis development and microRNA (miRNA) genes whose functions are not yet well understood. We overexpressed the Hox cluster microRNA miR-196 in zebrafish embryos and found four specific, viable phenotypes: failure of pectoral fin bud initiation, deletion of the 6th pharyngeal arch, homeotic aberration and loss of rostral vertebrae, and reduced number of ribs and somites. Reciprocally, miR-196 knockdown evoked an extra pharyngeal arch, extra ribs, and extra somites, confirming endogenous roles of miR-196. miR-196 injection altered expression of hox genes and the signaling of retinoic acid through the retinoic acid receptor gene rarab. Knocking down rarab mimicked the pectoral fin phenotype of miR-196 overexpression, and reporter constructs tested in tissue culture and in embryos showed that the rarab 3′UTR is a miR-196 target for pectoral fin bud initiation. These results show that a Hox cluster microRNA modulates development of axial patterning similar to nearby protein-coding Hox genes, and acts on appendicular patterning at least in part by modulating retinoic acid signaling.  相似文献   

7.
8.
Summary We have used interspecific grafts between Xenopus borealis and Xenopus laevis to study the signalling system that produces tail mesoderm. Early gastrula ectoderm grafted into the posterior neural plate region of neurulae responds to a mesodermal inducing signal in this region and forms mainly tail somites; this signal persists until at least the early tail bud stage. Ventral ectoderm grafted into the posterior neural plate loses its competence to respond to this signal after stage 10 1/2. We have established the specification of anterior and posterior neural plate ectoderm. In ectodermal sandwiches or when grafted into unusual positions, anterior regions gave rise to mainly nervous system and posterior regions to large amounts of muscle, together with some nervous system. Thus it was impossible to assess the competence of posterior neural plate ectoderm to form further mesoderm and hence to establish if mesodermal induction continues during neurulation in unmanipulated embryos.  相似文献   

9.
The maternal effect and zygotic phenotype of l(1)pole hole (l(1)ph) is described. l(1)ph is a zygotic lethal mutation which affects cell division of adult precursor cells in Drosophila larvae. The locus is located in 2F6 on the salivary gland chromosome map and four alleles have been characterized. Germ-line clonal analysis of amorphic alleles indicates that l(1)ph has a maternal effect lethal phenotype. Two lethal phenotypes are observed among embryos derived from female germ-line clones homozygous for amorphic alleles dependent upon the zygotic activity of l(1)ph+ introduced via the sperm. Class 1: If no wild-type dose of the gene is introduced, embryos form abnormal blastoderms in which nuclear migration and cell formation is disrupted leading to an ill-defined cuticular pattern. Class 2: If a wild-type copy of the gene is introduced, blastoderm cells do not form beneath the pole cells (the pole hole phenotype); subsequently such embryos are missing cuticular structures posterior to the seventh abdominal segment (the torso phenotype). When the zygotic activity l(1)ph+ is modulated using position effect variegation a new phenotype is observed among class 2 embryos in which torso embryos are twisted along their longitudinal axis.  相似文献   

10.
11.
BACKGROUND: The phenotype of embryos exposed to ethanol is complex and likely due to multiple alterations in developmental pathways. We have previously demonstrated that Sonic hedgehog signaling (Shh‐s) was reduced in both chicken and zebrafish embryos when exposed to ethanol. METHODS: There are many tissues affected by embryonic ethanol exposure, and in this article we explore the development of axial tissues, using zebrafish embryos. We then compare these effects to the phenotypes produced by exposure to two drugs that also inhibit Shh‐s: cyclopamine and forskolin. RESULTS: We found alterations in the development of the notochord and somites produced by all three compounds, although only ethanol produced developmental delay of epiboly. Upon observation of early developing embryos, muscle pioneer cells were completely lost in cyclopamine‐treated embryos, and reduced, but less so, in embryos treated with forskolin and ethanol. Ethanol treatment produced a dose‐dependent reduction in total body length that may be linked to epiboly delay seen earlier during development. Despite the differences between cyclopamine and forskolin, we found that shh mRNA injection rescued the short body length, the alteration in somite shape, and the cyclopia produced by ethanol exposure. CONCLUSIONS: Taken together, each teratogen produced a unique set of phenotypic changes in the body axis, suggesting that each compound affects Shh‐s and also produces a distinctive set of molecular alterations. However, addition of exogenous Shh to ethanol treated zebrafish prevented many of the gross physical phenotypes, suggesting that the suppression of Shh‐s is one of the major effects of ethanol exposure. Birth Defects Research (Part A), 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
13.
Several genetically modified mouse models have been generated in order to drive expression of the Cre recombinase in the neuroectoderm. However, none of them specifically targets the posterior neural plate during neurulation. To fill this gap, we have generated a new transgenic mouse line in which Cre expression is controlled by a neural specific enhancer (NSE) from the Caudal‐related homeobox 2 (Cdx2) locus. Analyses of Cre activity via breeding with R26R‐YFP reporter mice have indicated that the Cdx2NSE‐Cre mouse line allows for recombination of LoxP sites in most cells of the posterior neural plate as soon as from the head fold stage. Detailed examination of double‐transgenic embryos has revealed that this novel Cre‐driver line allows targeting the entire posterior neural tube with an anterior limit in the caudal hindbrain. Of note, the Cdx2NSE regulatory sequences direct Cre expression along the whole dorso‐ventral axis (including pre‐migratory neural crest cells) and, accordingly, YFP fluorescence has been also observed in multiple non‐cranial neural crest derivatives of double‐transgenic embryos. Therefore, we believe that the Cdx2NSE‐Cre mouse line represents an important novel genetic tool for the study of early events occurring in the caudal neuroectoderm during the formation of both the central and the peripheral nervous systems. genesis 51:777–784. © 2013 Wiley Periodicals, Inc.  相似文献   

14.
In the minds of many, Hox gene null mutant phenotypes have confirmed the direct role that these genes play in specifying the pattern of vertebrate embryos. The genes are envisaged as defining discrete spatial domains and, subsequently, conferring specific segmental identities on cells undergoing differentiation along the antero-posterior axis. However, several aspects of the observed mutant phenotypes are inconsistent with this view. These include: the appearance of other, unexpected transformations along the dorsal axis; the occurrence of mirror-image duplications; and the development of anomalies outside the established domains of normal Hox gene expression. In this paper, Hox gene disruptions are shown to elicit regeneration-like responses in tissues confronted with discontinuities in axial identity. The polarities and orientations of transformed segments which emerge as a consequence of this response obey the rules of distal transformation and intercalary regeneration. In addition, the incidence of periodic anomalies suggests that the initial steps of Hox-mediated patterning occurs in Hensen's node. As gastrulation proceeds, mesoderm cell cycle kinetics impose constraints upon subsequent cellular differentiation. This results in the delayed manifestation of transformations along the antero-posterior axis. Finally, a paradigm is sketched in which temporal, rather than spatial axial determinants direct differentiation. Specific, testable predictions are made about the role of Hox genes in the establishment of segmental identity.  相似文献   

15.
16.
 The vertebrate Hox genes have been shown to confer regional identity along the anteroposterior axis of the developing embryo, especially within the central nervous system (CNS) and the paraxial mesoderm. The notochord has been shown to play vital roles in patterning adjacent tissues along both the dorsoventral and mediolateral axes. However, the notochord’s role in imparting anteroposterior information to adjacent structures is less well understood, especially as the notochord shows no morphological distinctions along the anteroposterior axis and is not generally described as a segmental or compartmentalized structure. Here we report that four zebrafish hox genes: hoxb1, hoxb5, hoxc6 and hoxc8 are regionally expressed along the anteroposterior extent of the developing notochord. Notochord expression for each gene is transient, but maintains a definite, gene-specific anterior limit throughout its duration. The hox gene expression in the zebrafish notochord is spatially colinear with those genes lying most 3’ in the hox clusters having the most anterior limits. The expression patterns of these hox cluster genes in the zebrafish are the most direct molecular evidence for a system of anteroposterior regionalization of the notochord in any vertebrate studied to date. Received: 30 March 1998 / Accepted: 16 June 1998  相似文献   

17.
The identification of cis-sequences responsible for spatiotemporal patterns of gene expression often requires the functional analysis of large genomic regions. In this study a 100-kb zebrafish Hoxa-11b-lacZ reporter gene was constructed and expressed in transgenic mice. PAC clone 10-O19, containing a portion of the zebrafish HoxA-b cluster, was captured into the yeast-bacterial shuttle vector, pPAC-ResQ, by recombinogenic targeting. A lacZ reporter gene was then inserted in-frame into exon 1 of the zfHoxa-11b locus by a second round of recombinogenic targeting. Expression of the zfHoxa-11b-lacZ reporter gene in 10.5 d.p.f. transgenic mouse embryos was observed only in the posterior portion of the A-P axis, in the paraxial mesoderm, neural tube, and somites. These findings demonstrate the utility of recombinogenic targeting for the modification and expression of large inserts captured from P1/PAC clones. Received: 22 June 1999 / Accepted: 1 September 1999  相似文献   

18.
The establishment of anteroposterior (AP) polarity in the early mouse epiblast is crucial for the initiation of gastrulation and the subsequent formation of the embryonic (head to tail) axis. The localization of anterior and posterior determining genes to the appropriate region of the embryo is a dynamic process that underlies this early polarity. Several studies indicate that morphological and molecular markers which define the early AP axis are first aligned along the short axis of the elliptical egg cylinder. Subsequently, just prior to the time of primitive streak formation, a conformational change in the embryo realigns these markers with the long axis. We demonstrate that embryos lacking the signaling factor Wnt3 exhibit defects in this axial realignment. In addition, chimeric analyses and conditional removal of Wnt3 activity reveal that Wnt3 expression in the epiblast is required for induction of the primitive streak and mesoderm whereas activity in the posterior visceral endoderm is dispensable.  相似文献   

19.
Growth and differentiation factor 11 (GDF11) is a transforming growth factor β family member that has been identified as the central player of anterior–posterior (A–P) axial skeletal patterning. Mice homozygous for Gdf11 deletion exhibit severe anterior homeotic transformations of the vertebrae and craniofacial defects. During early embryogenesis, Gdf11 is expressed predominantly in the primitive streak and tail bud regions, where new mesodermal cells arise. On the basis of this expression pattern of Gdf11 and the phenotype of Gdf11 mutant mice, it has been suggested that GDF11 acts to specify positional identity along the A–P axis either by local changes in levels of signaling as development proceeds or by acting as a morphogen. To further investigate the mechanism of action of GDF11 in the vertebral specification, we used a Cdx2-Cre transgene to generate mosaic mice in which Gdf11 expression is removed in posterior regions including the tail bud, but not in anterior regions. The skeletal analysis revealed that these mosaic mice display patterning defects limited to posterior regions where Gdf11 expression is deficient, whereas displaying normal skeletal phenotype in anterior regions where Gdf11 is normally expressed. Specifically, the mosaic mice exhibited seven true ribs, a pattern observed in wild-type (wt) mice (vs. 10 true ribs in Gdf11−/− mice), in the anterior axis and nine lumbar vertebrae, a pattern observed in Gdf11 null mice (vs. six lumbar vertebrae in wt mice), in the posterior axis. Our findings suggest that GDF11, rather than globally acting as a morphogen secreted from the tail bud, locally regulates axial vertebral patterning.  相似文献   

20.
Interest in developmental interactions involving the notochord and perinotochordal sheath led to a comparative investigation of these structures in three mouse mutants. Alcian blue or periodic acid-Schiff staining of 9 1/2-13 days' gestational age embryos revealed a supernumerary notochordal-like mass of cells or a deflected notochord in association with duplication of the neural tube in mice of the duplicitas posterior stock. The perinotochordal sheath and basement membrane of the accessory notochordal masses were frequently defective. Patch and Tail-short embryos were also utilized for study by means of light microscopy using Alcian blue staining. In Patch embryos, although the notochord was sometimes compressed dorso-ventrally, it had an intact perinotochordal sheath and a defined, but undulated, basement membrane. Mesenchymal cells between the notochord and neural tube were occasionally replaced by cell-free space. In contrast, in Tail-short embryos a poorly formed, lightly staining or totally absent notochordal sheath was revealed. Indeed, it was sometimes difficult to distinguish the notochord from surrounding mesenchymal cells. In both the Patch and Tail-short embryos the notochord was also deflected from its medial position. In the three mutants studied, the direct or indirect effect of gene action appeared to be on the notochord and perinotochordal sheath, and the important role of these structures in abnormal axial development was established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号