共查询到20条相似文献,搜索用时 0 毫秒
1.
We designed and synthesized several fluorescent nucleotides from thiophene, anthracene and pyrene, which have different sizes, and screened their incorporation and extension capability during the rolling circle amplification of DNA. The thiophene-based fluorescent nucleotide (dUthioTP) could highly incorporate and extended into the rolling circle DNA product, while other fluorescent nucleotides (dUanthTP, and dUpyrTP) could not. This dUthioTP fluorescent nucleotide could be used for the detection of miRNA 24-3P, which is related PRRSV. This direct labeling system during rolling circle DNA amplification exhibited an increased fluorescence signal showing gel formation for the detection of miRNA 24-3P. This direct labeling system is a very simple and cost-efficient method for the detection miRNA 24-3P and also exhibited highly sensitive and selective detection properties. 相似文献
2.
Girish Nallur Chenghua Luo Linhua Fang Stephanie Cooley Varshal Dave Jeremy Lambert Kari Kukanskis Stephen Kingsmore Roger Lasken Barry Schweitzer 《Nucleic acids research》2001,29(23):e118
While microarrays hold considerable promise in large-scale biology on account of their massively parallel analytical nature, there is a need for compatible signal amplification procedures to increase sensitivity without loss of multiplexing. Rolling circle amplification (RCA) is a molecular amplification method with the unique property of product localization. This report describes the application of RCA signal amplification for multiplexed, direct detection and quantitation of nucleic acid targets on planar glass and gel-coated microarrays. As few as 150 molecules bound to the surface of microarrays can be detected using RCA. Because of the linear kinetics of RCA, nucleic acid target molecules may be measured with a dynamic range of four orders of magnitude. Consequently, RCA is a promising technology for the direct measurement of nucleic acids on microarrays without the need for a potentially biasing preamplification step. 相似文献
3.
Nucleotide excision repair (NER) is the most versatile DNA-repair pathway in all organisms. While bacteria require only three proteins to complete the incision step of NER, eukaryotes employ about 30 proteins to complete the same step. Here we summarize recent studies demonstrating that ubiquitination, a post-translational modification, plays critical roles in regulating the NER activity either dependent on or independent of ubiquitin-proteolysis. Several NER components have been shown as targets of ubiquitination while others are actively involved in the ubiquitination process. We argue through this analysis that ubiquitination serves to coordinate various steps of NER and meanwhile connect NER with other related pathways to achieve the efficient global DNA-damage response. 相似文献
4.
Nucleotide excision repair (NER) is a highly versatile DNA repair process. Its ability to repair a large number of different damages with the same subset of recognition factors requires structural tools for damage recognition that are both broad and very accurate. Over the past few years detailed structural information on damage recognition factors from eukaryotic and prokaryotic NER has emerged. These structures shed light on the toolkit utilized in the damage recognition process and help explain the broad substrate specificity of NER. 相似文献
5.
Signal sorting and amplification through G protein-coupled receptors 总被引:20,自引:0,他引:20
6.
7.
Damage recognition in nucleotide excision repair of DNA 总被引:27,自引:0,他引:27
Nucleotide excision repair (NER) is found throughout nature, in eubacteria, eukaryotes and archaea. In human cells it is the main pathway for the removal of damage caused by UV light, but it also acts on a wide variety of other bulky helix-distorting lesions caused by chemical mutagens. An ongoing challenge is to understand how a site of DNA damage is located during NER and distinguished from non-damaged sites. This article reviews information on damage recognition in mammalian cells and the bacterium Escherichia coli. In mammalian cells the XPC-hHR23B, XPA, RPA and TFIIH factors may all have a role in damage recognition. XPC-hHR23B has the strongest affinity for damaged DNA in some assays, as does the similar budding yeast complex Rad4-Rad23. There is current discussion as to whether XPC or XPA acts first in the repair process to recognise damage or distortions. TFIIH may play a role in distinguishing the damaged strand from the non-damaged one, if translocation along a DNA strand by the TFIIH DNA helicases is interrupted by encountering a lesion. The recognition and incision steps of human NER use 15 to 18 polypeptides, whereas E. coli requires only three proteins to obtain a similar result. Despite this, many remarkable similarities in the NER mechanism have emerged between eukaryotes and bacteria. These include use of a distortion-recognition factor, a strand separating helicase to create an open preincision complex, participation of structure-specific endonucleases and the lack of a need for certain factors when a region containing damage is already sufficiently distorted. 相似文献
8.
9.
We have been developing a rapid and convenient assay for the measurement of DNA damage and repair in specific genes using quantitative polymerase chain reaction (QPCR) methodology. Since the sensitivity of this assay is limited to the size of the DNA amplification fragment, conditions have been found for the quantitative generation of PCR fragments from human genomic DNA in the range of 6-24 kb in length. These fragments include: (1) a 16.2 kb product from the mitochondrial genome; (2) 6.2, 10.4 kb, and 15.4 kb products from the hprt gene, and (3) 13.5, 17.7, 24.2 kb products from the human beta-globin gene cluster. Exposure of SV40 transformed human fibroblasts to increasing fluences of ultraviolet light (UV) resulted in the linear production of photoproducts with 10 J/m(2) of UVC producing 0.085 and 0.079 lesions/kb in the hprt gene and the beta-globin gene cluster, respectively. Kinetic analysis of repair following 10 J/m(2) of UVC exposure indicated that the time necessary for the removal of 50% of the photoproducts, in the hprt gene and beta-globin gene cluster was 7.8 and 24.2 h, respectively. Studies using lymphoblastoid cell lines show very little repair in XPA cells in both the hprt gene and beta-globin locus. Preferential repair in the hprt gene was detected in XPC cells. Cisplatin lesions were also detected using this method and showed slower rates of repair than UV-induced photoproducts. These data indicate that the use of long targets in the gene-specific QPCR assay allows the measurement of biologically relevant lesion frequencies in 5-30 ng of genomic DNA. This assay will be useful for the measurement of human exposure to genotoxic agents and the determination of human repair capacity. 相似文献
10.
Nucleotide excision repair (NER) is the most versatile and universal pathway of DNA repair that is capable of repairing virtually
any damages other than a double strand break (DSB). This pathway has been shown to be inducible in several systems. However,
question of a threshold and the nature of the damage that can signal induction of this pathway remain poorly understood. In
this study it has been shown that prior exposure to very low doses of osmium tetroxide enhanced the survival of wild type
Saccharomyces cerevisiae when the cells were challenged with UV light. Moreover, it was also found that osmium tetroxide treated rad3 mutants did not show enhanced survival indicating an involvement of nucleotide excision repair in the enhanced survival.
To probe this further the actual removal of pyrimidine dimers by the treated and control cells was studied. Osmium tetroxide
treated cells removed pyrimidine dimers more efficiently as compared to control cells. This was confirmed by measuring the
in vitro repair synthesis in cell free extracts prepared from control and primed cells. It was found that the uptake of active 32P was significantly higher in the plasmid substrates incubated with extracts of primed cells. This induction is dependent
on de novo synthesis of proteins as cycloheximide treatment abrogated this response. The nature of induced repair was found to be essentially
error free.
Study conclusively shows that NER is an inducible pathway in Saccharomyces cerevisiae and its induction is dependent on exposure to a threshold of a genotoxic stress. 相似文献
11.
12.
Crystal structure of UvrB, a DNA helicase adapted for nucleotide excision repair 总被引:9,自引:0,他引:9 下载免费PDF全文
Nucleotide excision repair (NER) is a highly conserved DNA repair mechanism. NER systems recognize the damaged DNA strand, cleave it on both sides of the lesion, remove and newly synthesize the fragment. UvrB is a central component of the bacterial NER system participating in damage recognition, strand excision and repair synthesis. We have solved the crystal structure of UvrB in the apo and the ATP-bound forms. UvrB contains two domains related in structure to helicases, and two additional domains unique to repair proteins. The structure contains all elements of an intact helicase, and is evidence that UvrB utilizes ATP hydrolysis to move along the DNA to probe for damage. The location of conserved residues and structural comparisons allow us to predict the path of the DNA and suggest that the tight pre-incision complex of UvrB and the damaged DNA is formed by insertion of a flexible beta-hairpin between the two DNA strands. 相似文献
13.
14.
《Molecular cell》2022,82(7):1343-1358.e8
15.
16.
Wood RD 《Biochimie》1999,81(1-2):39-44
For the bulk of mammalian DNA, the core protein factors needed for damage recognition and incision during nucleotide excision repair (NER) are the XPA protein, the heterotrimeric RPA protein, the 6 to 9-subunit TFIIH, the XPC-hHR23B complex, the XPG nuclease, and the ERCC1-XPF nuclease. With varying efficiencies, NER can repair a very wide range of DNA adducts, from bulky helical distortions to subtle modifications on sugar residues. Several of the NER factors have an affinity for damaged DNA. The strongest binding factor appears to be XPC-hHR23B but preferential binding to damage is also a property of XPA, RPA, and components of TFIIH. It appears that in order to be repaired by NER, an adduct in DNA must have two features: it must create a helical distortion, and there must be a change in DNA chemistry. Initial recognition of the distortion is the most likely function for XPC-hHR23B and perhaps XPA and RPA, whereas TFIIH is well-suited to locate the damaged DNA strand by locating altered DNA chemistry that blocks translocation of the XPB and XPD components. 相似文献
17.
18.
2,6-Diamino-4-hydroxy-5-formamidopyrimidine derived from guanine (FapyG) is a major DNA lesion formed by reactive oxygen species. In this study, a defined oligonucleotide template containing a 5-N-methylated analog of FapyG (mFapyG) was prepared, and its effect on DNA replication was quantitatively assessed in vitro. The results were further compared with those obtained for 7,8-dihydro-8-oxoguanine and an apurinic/apyrimidinic site embedded in the same sequence context. mFapyG constituted a fairly strong but not absolute block to DNA synthesis catalyzed by Escherichia coli DNA polymerase I Klenow fragment with and without an associated 3'-5' exonuclease activity, thereby permitting translesion synthesis with a limited efficiency. The efficiency of translesion synthesis was G > 7,8-dihydro-8-oxoguanine > mFapyG > apurinic/apyrimidinic site. Analysis of the nucleotide insertion (f(ins) = V(max)/K(m) for insertion) and extension (f(ext) = V(max)/K(m) for extension) efficiencies for mFapyG revealed that the extension step constituted a major kinetic barrier to DNA synthesis. When mFapyG was bypassed, dCMP, a cognate nucleotide, was preferentially inserted opposite the lesion (dCMP (relative f(ins) = 1) dTMP (2.4 x 10(-4)) approximately dAMP (8.1 x 10(-5)) > dGMP (4.5 x 10(-7))), and the primer terminus containing a mFapyG:C pair was most efficiently extended (mFapyG:C (relative f(ext) = 1) > mFapyG:T (4.6 x 10(-3)) mFapyG:A and mFapyG:G (extension not observed)). Thus, mFapyG is a potentially lethal but not premutagenic lesion. 相似文献
19.
DNA tandem lesions are comprised of two contiguously damaged nucleotides. This subset of clustered lesions is produced by a variety of oxidizing agents, including ionizing radiation. Clustered lesions can inhibit base excision repair (BER). We report the effects of tandem lesions composed of a thymine glycol and a 5'-adjacent 2-deoxyribonolactone (LTg) or tetrahydrofuran abasic site (FTg). Some BER enzymes that act on the respective isolated lesions do not accept the tandem lesion as a substrate. For instance, endonuclease III (Nth) does not excise thymine glycol (Tg) when it is part of either tandem lesion. Similarly, endonuclease IV (Nfo) does not incise L or F when they are in tandem with Tg. Long-patch BER overcomes inhibition by the tandem lesion. DNA polymerase beta (Pol beta) carries out strand displacement synthesis, following APE1 incision of the abasic site. Pol beta activity is enhanced by flap endonuclease (FEN1), which cleaves the resulting flap. The tandem lesion is also incised by the bacterial nucleotide excision repair system UvrABC with almost the same efficiency as an isolated Tg. These data reveal two solutions that DNA repair systems can use to counteract the formation of tandem lesions. 相似文献
20.