首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Patchy occurrences of benthic drift algae (i.e. loose lying macroalgal mats) may increase habitat complexity on normally bare soft bottoms, but at the same time, extensive amounts of drifting algal mats are known to stress the benthic fauna. This paper presents results of the first detailed study of the fauna associated with drift algal mats in the northern Baltic Sea. In order to assess the importance of drifting algae as an alternative habitat for benthic fauna, benthic drift algal mats were sampled on shallow (2-9 m) sandy soft bottoms in the outer archipelago of the ?land Islands (Finland). Species composition, abundance and biomass of the macrofauna associated with algal mats were recorded. The results show that drifting algae at times can harbour very high abundances of invertebrates (up to 1116 individuals/g algal dryweight), surpassing invertebrate densities recorded in seagrass communities. The algal fauna varied between sites and over time, and factors such as ambient benthic fauna, exposure to wind-wave disturbance, depth, and algal coverage and condition influenced the invertebrate community composition of the algal mats. Abundance increased while individual biomass of the animals decreased over time (summer season; July-October). A series of laboratory experiments were conducted in order to test the ability of a few important benthic species to move up into, and survive in a drifting algal mat. Macoma balthica, Hydrobia spp., Nereis diversicolor and Bathyporeia pilosa were used in the experiments, and significant differences in their survival and mobility within drifting algae were recorded. This study shows that benthic species differ significantly in their ability to utilise the algal mats, with mainly opportunistic and mobile taxa such as Hydrobia spp., Chironomidae and Ostracoda benefiting from the algae, whereas infaunal species such as M. balthica and B. pilosa are negatively affected. The occurrence of eutrophication induced drifting macroalgal mats has increased significantly during the last decade in the northern Baltic Sea. Hence, the importance of drifting algae as a stress factor and as an alternative habitat for benthic fauna increases.  相似文献   

2.
Cattaneo  Antonella  Kerimian  Takie  Roberge  Micheline  Marty  Jéôme 《Hydrobiologia》1997,354(1-3):101-110
In stream, substrata of different size present different degree ofstability, current, erosion, and deposition to colonizingorganisms. In this study, we tested the importance of substratumsize ranging from sand to small boulders for periphytondistribution and abundance. Because trophy strongly affect streamorganisms, we sampled at nine sites chosen to represent the rangeof nutrients typical of Eastern Ontario and Western Québec. Alarge part of the variability in algal biomass (as chlorophyll)among sites was explained by trophy (as seston or totalphosphorus). However, there was also an effect of substratum size.Cobbles had the highest biomass, and gravel the lowest; sand andboulders were intermediate. Assemblages on different substrata weredifferent in taxonomy and life forms. Cyanobacterial colonies andmotile diatoms dominated the finer substrata while adnate andfilamentous algae were more developed on the larger ones.Consequently periphyton on fine sediments was more loosely attachedthan on rocks. Average algal size was not related to substratumsize but increased significantly with trophy confirmingobservations in benthic and planktonic assemblages inlakes.  相似文献   

3.
Aarnio  Katri  Mattila  Johanna 《Hydrobiologia》2000,440(1-3):347-355
Due to increasing eutrophication of the coastal Baltic waters, drifting algae are a common phenomenon. Drifting algal mats accumulate on shallow sandy bottoms in late summer and autumn, and affect the ambient fauna. Juvenile flounder, Platichthys flesus, utilize these habitats during their first few years. They feed on benthic meio- and macrofauna; part of their diet consists of shelled species, such as Ostracods, and juvenile Hydrobia spp. and Macoma balthica. Earlier studies have shown that up to 75% of ostracods and 92% of hydrobiids survive the gut passage of juvenile flounder, while all M. balthica are digested by the fish. We conducted laboratory experiments to study how the shelled prey responded to a drift algal mat, and the predation efficiency of juvenile P. flesus on these prey species on bare sand and with drifting algae (50% coverage). Hydrobia spp. utilized the drift algae as a habitat and, after 1 h, 50% had moved into the algae; ostracods and M. balthica were more stationary and, after 96 h, only 23 and 12%, respectively, were found in the algae. For the predation efficiency of P. flesus, a two-way ANOVA with habitat (algae, bare sand) and predation (fish, no fish) as factors revealed that both algae and predation affected negatively the survival of all three prey species. The algae, thus, affected the predation efficiency of juvenile P. flesus and the consumption of prey was much reduced in the algal treatments compared to the bare sand. This was due probably to increased habitat complexity and the ability of prey, especially hydrobiids, to use the algal mat as a refuge. Altered habitat structure due to drift algae, together with the resultant changes in habitat (refuge) value for different prey species, may profoundly change the structure of benthic communities.  相似文献   

4.
Subtropical seagrass beds can be subject to relatively high levels of direct herbivory and large blooms of drift algae, both of which can have important effects on the floral and faunal components of the community. Caging experiments were used to investigate these factors in a Thalassia testudinum bed in Biscayne Bay, Florida. Abundance of sea urchins, Lytechinus variegatus, and drift algae was manipulated within the cages. Naturally occurring levels of urchin grazing do not appear to affect the T. testudinum population. With experimentally increased urchin densities in the winter, seagrass shoot density and aboveground biomass decreased significantly. Similar effects were not detected in the summer, indicating that the impact of grazing on T. testudinum is lessened during this time of year. Shoot density was more vulnerable to grazing than aboveground biomass. This may be a result of grazing-induced increases in seagrass productivity, in which the remaining shoots produce more or longer leaves. In the winter, drift algal blooms form large mats that cover the seagrass canopy. Under the normal grazing regime these algal blooms do not have significant negative effects on the seagrass. With increased grazing pressure, however, there is a synergistic effect of grazing and drift algae on seagrass shoot density. At intermediate urchin density (10 per m(-2)), cages without algae did not undergo significant decreases in shoot density, while those with algae did. At the high density of urchins, the number of seagrass shoots in cages both with and without algae decreased, but the effect was more pronounced for cages with algae. Invertebrate abundance at the field site was low relative to other seagrass beds. There were no discernible effects, either positive or negative, of urchin and algae manipulations on the sampled invertebrate community.  相似文献   

5.
The spatial distribution of seagrass and algae communities can be difficult to determine in large, shallow lagoon systems where high turbidity prevents the use of optical methods like aerial photography or satellite imagery. Further complications can arise when algae are not permanently attached to the substratum and drift with tides and currents. A study using acoustic seafloor discrimination was conducted in the Indian River Lagoon (Florida, USA) to determine the extent of drift algae and seagrass. Acoustic surveys using the QTC View V system based on 50 and 200 kHz transducers were conducted near Sebastian Inlet. Results indicate that areas of seagrass can be identified, and are mixed with a high abundance of drift algae. Nearest-neighbor extrapolation was used to fill in spaces between survey lines and thus obtain spatially cohesive maps. These maps were then ground-truthed using data from towed video and compared using confusion matrices, The maps showed a high level of agreement (60%) with the actual distribution of algae, however some confusion existed between bare sand and algae as well as seagrass.  相似文献   

6.
In the Laurentian Great Lakes, phytoplankton growth and biomass are secondarily limited by silica (Si), as a result of phosphorus (P) enrichment. Even modest levels of P enrichment can induce secondary Silimitation, which, in turn, promotes a shift from the native diatom phytoplankton flora to chlorophyte and cyanobacteria species. However, very little is known about the nutritional status of benthic populations and their response to nutrient enrichment. Two experiments were performed in the littoral zone of Lake Michigan where nutrients were delivered to in situ benthic algal (episammic and epilithic) assemblages using nutrient‐diffusing substrata. In order to test the hypothesis that benthic algae in Lake Michigan are Si limited, a 2 × 3 factorial experiment was used to deliver all combinations of Si, N, and P to resident assemblages growing on artificial substrata composed of natural (Si rich) versus calcium carbonate (Si poor) sand. A second experiment utilized a serial enrichment to evaluate the role of Si in mediating changes in taxonomic composition. These findings indicate that benthic algae in Lake Michigan exhibit signs of secondary Si limitation, and that their response to enrichment is similar to the phytoplankton. Moreover, natural sand substrata may provide a source of Si to resident benthic algae.  相似文献   

7.
Altan Ozkan 《Biofouling》2013,29(4):469-482
This paper reports the cell–substratum interactions of planktonic (Chlorella vulgaris) and benthic (Botryococcus sudeticus) freshwater green algae with hydrophilic (glass) and hydrophobic (indium tin oxide) substrata to determine the critical parameters controlling the adhesion of algal cells to surfaces. The surface properties of the algae and substrata were quantified by measuring contact angle, electrophoretic mobility, and streaming potential. Using these data, the cell–substratum interactions were modeled using thermodynamic, DLVO, and XDLVO approaches. Finally, the rate of attachment and the strength of adhesion of the algal cells were quantified using a parallel-plate flow chamber. The results indicated that (1) acid–base interactions played a critical role in the adhesion of algae, (2) the hydrophobic alga attached at a higher density and with a higher strength of adhesion on both substrata, and (3) the XDLVO model was the most accurate in predicting the density of cells and their strength of adhesion. These results can be used to select substrata to promote/inhibit the adhesion of algal cells to surfaces.  相似文献   

8.
Seasonal development of benthic algae was studied over a three-year period in a small, nutrient-rich lowland stream to investigate inter-annual variation in the algal spring bloom and differences in algal biomass regulation on two different substrata: fine-grained sediments and stones. The algal spring bloom was initiated when irradiance at the sediment surface exceeded 7 mol photons m-2 d-1 and mean water velocity was concomitantly below the threshold for bed load transport in the stream. Large inter-annual and substratum-dependent differences in peak algal biomass were observed, thus suggesting that different parameters regulate algal biomass development on the two substrata. On fine-grained sediments algal biomass development was predominantly coupled to light availability, while on stony substrata algal composition and peak biomass might be affected by invertebrate grazing.  相似文献   

9.
Benthic algal response to N and P enrichment along a pH gradient   总被引:1,自引:1,他引:0  
Nutrient enrichment and its effect on benthic algal growth, community composition, and average cell size was assessed across two sites of differing pH within a single habitat. Nutrients were added using in situ substrata, which released either N, P, or no additional nutrients (controls) at each site for 21 days. Upon collection, chlorophyll and biovolume standing stocks of the attached algal microflora were measured. Chlorophyll concentration was different among all treatments, accumulating greatest on P, followed by N, and the least on C substrata (P < 0.001) and was highest at site-2 (P < 0.001), while total algal biovolume was highest on P compared to both N and C substrata (P < 0.05) and did not vary between sites. Increased growth on P substrata was due to the enhanced biovolume of filamentous green algae, although the affected taxa varied between sites. Biovolume to cell density ratios (as a measure of average cell size) were highest on P substrata over both N-enriched and control substrata (P < 0.05) and this pattern was similar between sites. Progression towards a community composed of larger cells following P enrichment observed along this pH gradient, seems to be related to the dominance of larger celled filamentous green algae. Thus, nutrients exhibited greater control on benthic algal growth than did changes in hydrogen ion concentration.Contribution number 581, Great Lakes Environmental Research LaboratoryContribution number 581, Great Lakes Environmental Research Laboratory  相似文献   

10.
1. We compared microbial biomass (bacteria, fungi, algae) and the activity of extracellular enzymes used in the decomposition of organic matter (OM) among different benthic substrata (leaves, coarse and fine substrata) over one hydrological year in a Mediterranean stream.
2. Microbial heterotrophic biomass (bacteria plus fungi) was generally higher than autotrophic biomass (algae), except during short periods of high light availability in the spring and winter. During these periods, sources of OM shifted towards autochthonous sources derived mainly from algae, which was demonstrated by high algal biomass and peptidase activity in benthic communities.
3. Heterotrophic activity peaked in the autumn. Bacterial and fungal biomass increased with the decomposition of cellulose and hemicellulose compounds from leaf material. Later, lignin decomposition was stimulated in fine (sand, gravel) and coarse (rocks, boulders and cobbles) substrata by the accumulation of fine detritus.
4. The Mediterranean summer drought provoked an earlier leaf fall. The resumption of the water flow caused the weathering of riparian soils and subsequently a large increase in dissolved organic carbon and nitrate, which led to growth of bacteria and fungi.  相似文献   

11.
1. Some characteristics of the photosynthesis and primary production of benthic and planktonic algal communities were investigated in a littoral zone covered with gravel in the north basin of Lake Biwa, paying special attention to the recent development of filamentous green algae (FGA) in the benthic algal community.
2. Pmax (maximum gross photosynthesis rate) values of the benthic algal community (0.1–1.2 mg C mg chl. a −1 h−1) obtained from photosynthesis–irradiance (P–I) curves were lower than those of the planktonic algal community (2.4–11.5 mg C mg chl. a −1 h−1). This is apparently a result of the high degree of self shading in the benthic algal community and its low turnover as compared with that of the planktonic algal community.
3. Relatively high Ik values (150–200 μmol photon m−2 s−1) were observed in the benthic algal community only in June–July when a FGA, Spirogyra sp., was abundant. This reflected a photosynthetic characteristic of the Spirogyra itself, in which photosynthesis was saturated at high light intensity.
4. The FGA community established in the layer between planktonic and sessile (benthic algae except for FGA) algal communities. It brought about extraordinarily high organic matter production in the littoral zone at the expense of production in the sessile algal community.  相似文献   

12.
The physical properties of substrata significantly influence benthic algal development. We explored the relationships among substratum surface texture and orientation with epilithic microphytobenthic biomass accumulation at the whole‐substratum and micrometer scales. Unglazed clay tiles set at three orientations (horizontal, vertical, and 45°), and six substrata of varying surface roughness were deployed in a prairie stream for 3 weeks. Substrata were analyzed for loosely attached, adnate, and total benthic algal biomass as chl a, and confocal laser scanning microscopy was used to measure substrata microtopography (i.e., roughness, microscale slope angles, and three‐dimensional surface area). At the whole‐substratum level, vertical substrata collected significantly (P < 0.05) less algal biomass, averaging 34% and 36% less than horizontal and 45° substrata, respectively. Benthic algal biomass was also significantly less on smoother surfaces; glass averaged 29% less biomass than stream rocks. At the microscale level, benthic algal biomass was the greatest at intermediate values, peaking at a mean roughness of approximately 17 μm, a mean microscale slope of 50°, and a projected/areal surface area ratio of 2:1. The proportion of adnate algae increased with surface roughness (26% and 67% for glass and brick, respectively), suggesting that substratum type changes the efficiency of algal removal by brushing. Individual substrata and microsubstrata characteristics can have a strong effect on benthic algae development and potentially affect reach scale algal variability as mediated by geomorphology.  相似文献   

13.
The distribution of seagrasses in a 15-ha area in the mid-Indian River lagoon on Florida's central east coast was mapped. Halodule wrightii Aschers. dominated in shallow (< 0.4 m) and Syringodium filiforme Kutz. in deeper water (> 0.5 m). Thalassia testudinum Banks ex König occurred as scattered patches. Areal coverage of monospecific stands of the three major seagrasses was: Syringodium 35%, Halodule 14%, Thalassia 6% and bare sand 21%. Mixed species stands, mostly Syringodium with Hallodule, covered 25% of the total study area. Above-ground seagrass biomass was maximum in summer (June–July) and minimum in late winter (February–March). Summer maxima ranged from 60 g dry wt. m?2 for Syringodium to ~ 300 g dry wt. m?2 for Thalassia, with Halodule intermediate at 160 g dry wt. m?2.Because distribution of unattached benthic macroalgae (“drift algae”), primarily Gracilaria spp., was highly aggregated, aggregations were first mapped, followed by stratified quadrat sampling in order to estimate total drift algal abundance. In April 1982, high-density patches covering a few hectares averaged 409 g dry wt. m?2. At maximum abundance, averaged over the entire 15-ha mapped area, drift algal biomass was 164 g dry wt. m?2; mean above-ground seagrass biomass was only 49 g dry wt. m?2. Other large expanses of the lagoon had similar accumulations of drift algae; densities of some accumulations exceeded 15 000 g dry wt. m?2. Year-to-year variability of seagrass and drift algal abundance was high and may be related to variations in light levels.Drift algae harbor high densities of animals and at times may be quantitatively more important locally than seagrasses in terms of habitat, nutrient dynamics and primary production.  相似文献   

14.
In contrast to marine organisms whose offspring go through an extended planktonic stage, the young of others develop directly into benthic juveniles or into yolky nonfeeding larvae that spend only a few hours in the plankton before settling. Yet, paradoxically, many such species have geographic distributions that are comparable to those with a pelagic dispersal stage. This article reviews some of the ways in which these organisms can expand their distributions: drifting, rafting, hitchhiking, creeping, and hopping. Drifting applies to species in which larvae may be short-lived, but adults can detach or be detached from their benthic substratum and be passively carried to new areas, floating at the water's surface or below it. Many encrusting species and mobile species can spread by rafting, settling on natural or artificial floating substrata which are propelled by wind and currents to new regions. Hitchhiking applies to those attaching to vessels or being carried in ballast water of ships to a distant region in which their offspring can survive. Other marine species extend their distributions by hopping from one island of hard substratum or favorable sedimentary microhabitat to another, while creeping species extend their distributions along shores or shelves where habitats remain similar for long distances.  相似文献   

15.
Mid and late successional benthic algae have poor dispersal capacities. Mobile herbivores may increase dispersal of some algae because spores can survive digestion by grazers and stick to external body appendages. We show that carpospores are the only type of reproductive unit of the rhodophyte Iridaea laminarioides Bory that survive passage through the digestive tract of the amphipod Hyale sp. The spores also stick to the amphipods' legs and are thus carried by the amphipods in the field. Amphipods significantly increased (P < 0.01) the number of spores settling on artificial substrata in places where barriers prevented the normal ingress of algal propagules. The presence of artificial substrata that act as a refuge for the grazers also caused an increase (P < 0.01) in the number of settled spores. Amphipods also significantly increased (P < 0.01) the number of spores under an Ulva sp. canopy in laboratory experiments.  相似文献   

16.
Invasive predators typically have larger effects on native prey populations than native predators, yet the potential roles of their consumptive versus non-consumptive effects (CEs vs. NCEs) in structuring invaded systems remains unclear. Invasive lionfish (Pterois volitans) may have ecosystem-level effects by altering native fish grazing on benthic algae that could otherwise displace corals. Lionfish could reduce grazing by decreasing the abundance of herbivorous fishes (CEs), and/or the predation risk posed by lionfish could alter grazing behavior of fishes (NCEs). To test for these CEs, we manipulated lionfish densities on large reefs in The Bahamas and surveyed fish populations throughout June 2009–2011. In July 2011, NCEs of lionfish were measured by observing fish grazing behavior on algal-covered substrata placed in microhabitats varying in lionfish presence at different spatial scales, and quantifying any resulting algal loss. Lionfish reduced small herbivorous fish density by the end of the 2010 summer recruitment season. Grazing by small and large fishes was reduced on high-lionfish-density reefs, and small fish grazing further decreased when in the immediate presence of lionfish within-reefs. Lionfish had a negative indirect effect on algal loss, with 66–80 % less algae removed from substrata in high-lionfish-density reefs. Parrotfishes were likely driving the response of herbivorous fishes to both CEs and NCEs of lionfish. These results demonstrate the importance of considering NCEs in addition to CEs of invasive predators when assessing the effects of invasions.  相似文献   

17.
Mean number of species and density of fishes in nearshore shallow waters of Shark Bay, a large subtropical embayment, were c . seven and 19.5 times greater in seagrass than over bare sand, where protection from predators and the abundance of potential invertebrate prey were less. The number of fish species and density of fishes over bare sand were lower in nearshore than offshore waters, where there was a greater amount of organic material and thus presumably a greater density of benthic macroinvertebrate prey. Species composition in vegetated and unvegetated habitats differed markedly, with species such as Monacanthus chinensis, Apogon rueppellii and Pelates quadrilineatus being largely confined to seagrass, whereas others such as Pseudorhombus jenynsii, Torquigener whitleyi and Engyprosopon grandisquama were found predominantly or exclusively over bare sand. The ichthyofauna in beds of Posidonia australis , in which the canopy is uniformly dense, differed in composition and comprised a greater number of species and density of fishes than that in Amphibolis antarctica , in which an open space is present beneath the terminal clusters of relatively short leaves. Species composition in the beds of both of these seagrass species underwent well defined cyclical changes, caused by out-of-phase sequential changes in the densities of certain species. Such changes were less common over bare sand, where the ichthyofaunal composition was more variable. The number of species and density of fishes over bare sand were greater at night than during the day, reflecting, in part, a tendency for species such as A. rueppellii to move into unvegetated areas to feed at night, when the likelihood of predation by visual predators would be reduced. Within Shark Bay, ichthyofaunal composition is influenced most by habitat type (vegetated v . unvegetated), followed in general by water depth and then region in the bay and time of year.  相似文献   

18.
Tropical reef fishes, along with many benthic invertebrates, have a life cycle that includes a sedentary, bottom-dwelling reproductive phase and a planktonic stage that occurs early in development. The adult benthic populations occupy disjunct, patchy habitats; the extent of gene flow due to dispersal of the planktonic life stage is generally unknown.  相似文献   

19.
Mechanisms that determine the strength of trophic cascades from fish to benthic algae via algivorous invertebrates in stream communities have not been clarified. Using seven fish species, we tested the hypothesis that the interspecific variation of predatory behavior of fishes affects the strength of trophic cascades in experimental streams. One or two species of fish were introduced into flow-through pools of 2.5 m2 and the abundances of benthic invertebrates and algae were monitored. Pike gudgeon, a diurnal benthic feeder, triggered a strong trophic cascade but masu salmon, a diurnal drift feeder, did not have a cascading effect. Japanese dace, which is both a diurnal benthic and drift feeder, increased the algal biomass, but the nocturnal benthic feeder cut-tailed bullhead had little cascading effect. The diurnal benthic feeder silver crucian carp also had a cascading effect, but no trophic cascade was triggered either by Asian pond loach or by Japanese common catfish, both of which are nocturnal benthic feeders. Thus, diurnal benthic fish exerted a stronger cascading effect than diurnal drift feeders or nocturnal fish. The combination of two fish species enhanced the per-capita strength of trophic cascades, probably because one of the two species, the benthic feeder, preyed on more invertebrates than in the single-species pools.  相似文献   

20.
Seagrass beds provide food and shelter for many fish species. However, the manner in which fishes use seagrass bed habitats often varies with life stage. Juvenile fishes can be especially dependent on seagrass beds because seagrass and associated habitats (drift macroalgae) may provide an effective tradeoff between shelter from predation and availability of prey. This study addressed aspects of habitat use by post-settlement pinfish, Lagodon rhomboides (Linneaus), an abundant and trophically important species in seagrass beds in the western North Atlantic and Gulf of Mexico. Abundance of post-settlement fish in seagrass beds was positively related to volume of drift macroalgae, but not to percent cover of seagrass, indicating a possible shelter advantage of the spatially complex algae. Tethering experiments indicated higher rates of predation in seagrass without drift macroalgae than in seagrass with drift macroalgae. Aquarium experiments showed lower predation with higher habitat complexity, but differences were only significant for the most extreme cases (unvegetated bottom, highest macrophyte cover). Levels of dissolved oxygen did not differ between vegetated and unvegetated habitats, indicating no physiological advantage for any habitat. Seagrass beds with drift macroalgae provide the most advantageous tradeoff between foraging and protection from predation for post-settlement L. rhomboides. The complex three-dimensional shelter of drift macroalgae provides an effective shelter that is embedded in the foraging habitat provided by seagrass. Drift macroalgae in seagrass beds is a beneficial habitat for post-settlement L. rhomboides by reducing the risk of predation, and by providing post-settlement habitat within the mosaic (seagrass beds) of adult habitat, thus reducing risks associated with ontogenetic habitat shifts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号