首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The purpose of this paper is to highlight the motor mechanisms involved in balance as the human, as a biped, continuously defends against gravitational and internal forces to maintain a safe posture. The search for these mechanisms needs precise and valid 3D measurements including both limbs plus valid biomechanical models. The literature shows the need for two force platforms to separate the mechanisms at the ankle and hip (load/unload mechanism). Also, precise measures ( approximately 0.03 mm) of markers on a multi-segment 3D bilateral model are required to record the minute trajectories of all segments and joints. The controlled variable, center-of-mass, is seen to be virtually in phase with the controlling variable, the center-of-pressure, which suggests a 0th order system where a simple series elastic spring could maintain balance. The first model involves a mass/spring/damper of medial/lateral balance: the stiffness was varied with stance width and the predicted sway from a spring controlled inverted pendulum closely matched the experimentally measured stiffness and sway. The second was a non-linear model of the plantarflexor series elastic elements which resulted in three closely validated predictions of anterior/posterior balance: the locus of the gravitational load line, the predicted ankle moment and the ankle stiffness at the operating point.  相似文献   

2.
3.
Certain aspects of balance control change with age, resulting in a slight postural instability. We examined healthy subjects between 20-82 years of age during the quiet stance under static conditions: at stance on a firm surface and/or on a compliant surface with eyes either open or closed. Body sway was evaluated from centre of foot pressure (CoP) positions during a 50 sec interval. The seven CoP parameters were evaluated to assess quiet stance and were analyzed in three age groups: juniors, middle-aged and seniors. The regression analysis showed evident increase of body sway over 60 years of age. We found that CoP parameters were significantly different when comparing juniors and seniors in all static conditions. The most sensitive view on postural steadiness during quiet stance was provided by CoP amplitude and velocity in AP direction and root mean square (RMS) of statokinesigram. New physiological ranges of RMS parameter in each condition for each age group of healthy subjects were determined. Our results showed that CoP data from force platform in quiet stance may indicate small balance impairment due to age. The determined physiological ranges of RMS will be useful for better distinguishing between small postural instability due to aging in contrast to pathological processes in the human postural control.  相似文献   

4.
A novel approach to quantifying postural stability in single leg stance is assessment of time-to-boundary (TTB) of center of pressure (COP) excursions. TTB measures estimate the time required for the COP to reach the boundary of the base of support if it were to continue on its instantaneous trajectory and velocity, thus quantifying the spatiotemporal characteristics of postural control. Our purposes were to examine: (a) the intrasession reliability of TTB and traditional COP-based measures of postural control, and (b) the correlations between these measures. Twenty-four young women completed three 10-second trials of single-limb quiet standing on each limb. Traditional measures included mean velocity, standard deviation, and range of mediolateral (ML) and anterior-posterior (AP) COP excursions. TTB variables were the absolute minimum, mean of minimum samples, and standard deviation of minimum samples in the ML and AP directions. The intrasession reliability of TTB measures was comparable to traditional COP based measures. Correlations between TTB and traditional COP based measures were weaker than those within each category of measures, indicating that TTB measures capture different aspects of postural control than traditional measures. TTB measures provide a unique method of assessing spatiotemporal characteristics of postural control during single limb stance.  相似文献   

5.
The purpose of this study was to detect the characteristics of center of pressure (COP) movement during tiptoe standing (TS) compared to quiet standing (QS). Eight healthy subjects were asked to perform QS and TS on a force platform. During standing, surface electromyograms (EMGs) were recorded from the soleus (SOL), flexor hallucis brevis (FHB), medial gastrocnemius (MG), lateral gastrocnemius (LG), and tibialis anterior (TA) muscles. The path length and rectangular area of the COP trajectory were significantly larger during TS than during QS. In contrast, irrespective of standing condition, the scaling coefficients in the short and long regions were above and below 0.5, respectively. The coherence spectrum between the COP and EMG from the SOL and FHB muscles was statistically significant during TS at frequencies up to 17 Hz, while that for the QS was only significant below 1 Hz. In conclusion, the control of COP movement during TS was similar to that during QS despite large COP fluctuations during TS. Our results suggest that unstable posture during TS is compensated for by the activities of the SOL and FHB muscles, which enhance postural control.  相似文献   

6.
It has been well known that balance instabilities after long-term exposure to microgravity (e.g., Anderson et al. 1986) or bedrest (BR) can be related to alterations and/or adaptations to postural control strategies. Little is known, however, how the reduced muscular activity affects the activation pattern of the lower limb muscles during quiet standing (QS). The purpose of this study was to investigate whether or not any changes in the lower limb muscle activation patterns during QS would occur after BR.  相似文献   

7.
Abstract

Background and aims: Role of the neck and jaw sensory motor system in control of body balance has been established. Tongue is an integral part of jaw sensory motor system and helps in execution of purposeful and precise motor tasks like eating, drinking and speaking. The purpose of this study was to evaluate the possible effects of tongue position on the postural control system.

Materials and method: We compared the mean center of gravity (COG) velocity during quiet standing on an unstable surface with eyes closed during two test conditions: (i) with habitual jaw resting position and (ii) with instructed tongue positioned against the upper incisors. One hundred and sixteen normal healthy male subjects (average age 31.56?±?8.51 years and height 170.86?±?7.26?cm) participated in the study. Their COG velocity (deg/s) was measured using the NeuroCom® Balance Master version 8.5.0 (Clackamas, OR, USA).

Results and conclusions: The results show that COG velocity decreased significantly while tongue was positioned against upper incisors in comparison to the habitual jaw resting position. Our findings suggest that the tongue positioning can modulate postural control mechanisms. Tongue positioning against the upper incisors can enhance the postural stability during upright standing on an unstable surface and in the absence of vision in healthy young adults. Our findings can be of value for evaluation and rehabilitation protocols for postural control dysfunction.  相似文献   

8.
Standing and walking balance control in humans relies on the transformation of sensory information to motor commands that drive muscles. Here, we evaluated whether sensorimotor transformations underlying walking balance control can be described by task-level center of mass kinematics feedback similar to standing balance control. We found that delayed linear feedback of center of mass position and velocity, but not delayed linear feedback from ankle angles and angular velocities, can explain reactive ankle muscle activity and joint moments in response to perturbations of walking across protocols (discrete and continuous platform translations and discrete pelvis pushes). Feedback gains were modulated during the gait cycle and decreased with walking speed. Our results thus suggest that similar task-level variables, i.e. center of mass position and velocity, are controlled across standing and walking but that feedback gains are modulated during gait to accommodate changes in body configuration during the gait cycle and in stability with walking speed. These findings have important implications for modelling the neuromechanics of human balance control and for biomimetic control of wearable robotic devices. The feedback mechanisms we identified can be used to extend the current neuromechanical models that lack balance control mechanisms for the ankle joint. When using these models in the control of wearable robotic devices, we believe that this will facilitate shared control of balance between the user and the robotic device.  相似文献   

9.
Joint coordination plays a critical role in maintaining postural stability, yet there is limited existing work describing joint coordination patterns in the time–frequency domain. Here, two-joint coordination was examined during quiet upright stance. A wavelet coherence method was applied to quantify the coherence between ankle–trunk and ankle–head angles in the sagittal and frontal planes. Wavelet coherence results indicated intermittent joint coordination particularly for frequencies of 2.5–4.0 Hz. Coherence results were further processed to estimate mean time intervals between coherence instances, coherence burst frequency, and the ratio of in-phase versus anti-phase behaviors. Time intervals between intermittent coherence were 1.3–1.5 sec, coherence burst frequency was ~0.4 Hz, and phase ratios were ~1.0. Intermittent “bursting” of postural muscles may account for the finding of intermittent coherence in the noted frequency band. Some age and/or gender differences in coherence were found, and may be related to comparable differences in postural control ability or strategies. Results from application of this new method support earlier evidence that kinematic coordination is achieved intermittently rather than continuously during quiet upright stance. This method may provide richer information regarding such coordination, and could be a useful approach in future studies.  相似文献   

10.
To determine the effects of muscle pump function on cardiac autonomic activity in response to quiet standing, we simulated the muscle pump effect by rhythmic lower-leg cuff inflation (RCI) with four cuff pressures of 0 (sham), 40, 80, and 120 mmHg at 5 cycles/min. The R-R interval (RRI) and beat-to-beat blood pressure (BP) were acquired in healthy subjects (6 males and 5 females, aged 21-24 yr). From the continuous BP measurement, stroke volume (SV) was calculated by a pulse-contour method. Using spectral and cross-spectral analysis, RRI and systolic BP variability as well as the gain of spontaneous cardiac baroreflex sensitivity (sBRS) were estimated for the low- and high-frequency (HF) bands. Compared with the sham condition, RCI with cuff pressures of 80 and 120 mmHg led to increases in the mean RRI (P < 0.01) and HF power of RRI fluctuation (P < 0.05 for 80 mmHg and P < 0.01 for 120 mmHg) during quiet standing. Reduction in SV during standing was suppressed, and the sBRS of the HF band for standing were increased by RCI for either cuff pressure (P < 0.05 for 80 mmHg and P < 0.01 for 120 mmHg). However, at 40 mmHg RCI, these remained unchanged. These results suggest that, during standing, RCI of the lower leg increases cardiac vagal outflow when the cuff pressure is raised enough to oppose the hydrostatic-induced venous pressure in the calf.  相似文献   

11.
The purpose of this study was to assess the effect of low-frequency force steadiness practice in the plantar flexor muscles on postural sway during quiet standing. Healthy young 21 men (21±1 yrs) were randomly assigned to a practice group (n=14) and a nonexercising control group (n=7). Practice groups were divided by frequency of practice: 7 participants practiced once a week, and the other 7 twice a week, for 4 weeks. Steadiness practice required practice group to 5 sets of 60-s contraction at levels corresponding to 10% and 20% maximal voluntary contraction (MVC) in the plantar flexor muscles. The 4-week-long practice period reduced the force fluctuations (assessed as the standard deviation (SD) of the outputted force during steady isometric plantar flexion) and postural sway (assessed as SD of the center of mass velocity during quiet standing). However, these practice effects were not significantly affected by the practice frequencies (1 vs. 2 sessions per week) examined in this study. Further, a linear regression analysis revealed the association between prepractice postural sway and the relative change in postural sway by the practice (r=-0.904) in the practice group. These results suggest that the steadiness practice in plantar flexor muscles improves postural stability during quiet standing, even though the practice is low-frequency (once a week) and low-intensity (within 20% MVC). These practice effects are dependent on prepractice postural stability. Further, the present results have provided the functional significance of force fluctuation in lower limb muscles.  相似文献   

12.

Background  

The human body adopts a number of strategies to maintain an upright position. The analysis of the human balance allows for the understanding and identification of such strategies. The displacement of the centre of pressure (COP) is a measure that has been successfully employed in studies regarding the postural control. Most of these investigations are related to the analysis of individuals suffering from neuromuscular disorders. Recent studies have shown that the elderly population is growing very fast in many countries all over the world, and therefore, researches that try to understand changes in this group are required. In this context, this study proposes the analysis of the postural control, measured by the displacement of the COP, in groups of young and elderly adults.  相似文献   

13.
Models of balance control can aid in understanding the mechanisms by which humans maintain balance. A balance control model of quiet upright stance based on an optimal control strategy is presented here. In this model, the human body was represented by a simple single-segment inverted pendulum during upright stance, and the neural controller was assumed to be an optimal controller that generates ankle control torques according to a certain performance criterion. This performance criterion was defined by several physical quantities relevant to sway. In order to accurately simulate existing experimental data, an optimization procedure was used to specify the set of model parameters to minimize the scalar error between experimental and simulated sway measures. Thirty-two independent simulations were performed for both younger and older adults. The model's capabilities, in terms of reflecting sway behaviors and identifying aging effects, were then analyzed based on the simulation results. The model was able to accurately predict center-of-pressure-based sway measures, and identify potential changes in balance control mechanisms caused by aging. Correlations between sway measures and model parameters are also discussed.  相似文献   

14.
Postural stability in standing balance results from the mechanics of body dynamics as well as active neural feedback control processes. Even when an animal or human has multiple legs on the ground, active neural regulation of balance is required. When the postural configuration, or stance, changes, such as when the feet are placed further apart, the mechanical stability of the organism changes, but the degree to which this alters the demands on neural feedback control for postural stability is unknown. We developed a robotic system that mimics the neuromechanical postural control system of a cat in response to lateral perturbations. This simple robotic system allows us to study the interactions between various parameters that contribute to postural stability and cannot be independently varied in biological systems. The robot is a 'planar', two-legged device that maintains compliant balance control in a variety of stance widths when subject to perturbations of the support surface, and in this sense reveals principles of lateral balance control that are also applicable to bipeds. Here we demonstrate that independent variations in either stance width or delayed neural feedback gains can have profound and often surprisingly detrimental effects on the postural stability of the system. Moreover, we show through experimentation and analysis that changing stance width alters fundamental mechanical relationships important in standing balance control and requires a coordinated adjustment of delayed feedback control to maintain postural stability.  相似文献   

15.
Measuring ankle joint stiffness (AJS) during quiet standing QS using an inverted pendulum model typically involves a single calculation covering the entire period of QS. This study compared AJS using the same 20.0s set of QS postural sway data but employing seven different calculation windows (0.25s, 0.5s, 1.0s, 2.0s, 5.0s, 10.0s and 20.0s). AJS was calculated for both anterio-posterior AP and medio-lateral ML directions of sway. Postural sway data from 19 subjects were used to calculate mean±SD and time-normalized AJS over the same 20s period of QS. Statistical power of this study was 0.99. The AJS had ICCs ranging from 0.47 to 0.85 with coefficient of variations ranging from 11.1% to 31.8%. There were significant differences in AJS between window sizes (P<0.0001) for both directions of sway. Specifically, AJS calculated by 1.0s windows was significantly larger (P<0.01) than others, except 0.5s, while the AJS of the largest two windows 10.0s and 20.0s were significantly smaller (P<0.01) than all others in both directions of sway. In conclusion, it is recommended that 1.0s windows be used to calculate AJS and that stiffness analyzed as a continuous signal offers a more complete picture of how AJS behaves during QS.  相似文献   

16.
The influence of foot position on standing balance   总被引:3,自引:0,他引:3  
To test the hypothesis that variations in foot position would significantly affect standing balance, we studied ten normal subjects on a Kistler force platform which measured the travel and center of pressure displacement. With the feet together there was substantially more mediolateral (ML) travel than with the axes of the feet 15, 30 or 45 cm apart and the mean ML position of the center of pressure was displaced toward the right; there was no consistent effect on anteroposterior (AP) travel or position. As the right foot was placed 10 and 30 cm forward or back, the least amount of ML and AP travel occurred with the feet even or at 10 cm either direction; the mean AP and ML position moved toward the foot which was placed more posteriorly. Of the five foot angles ranging from toes-out 45 degrees to toes-in 45 degrees, the extent of ML and AP travel was lowest in the toes-out 25 degrees position and greatest in the toes-in 45 degrees position; the mean AP and ML position was farthest forward and to the right with toes-in 45 degrees. These findings have implications for the prosthetic replacement of the lower limbs, sports, ergonomics and postural sway studies.  相似文献   

17.
While occupational back-support exoskeletons (BSEs) are considered as potential workplace interventions, BSE use may compromise postural control. Thus, we investigated the effects of passive BSEs on postural balance during quiet upright stance and functional limits of stability. Twenty healthy adults completed trials of quiet upright stance with differing levels of difficulty (bipedal and unipedal stance; each with eyes open and closed), and executed maximal voluntary leans. Trials were done while wearing two different BSEs (SuitX™, Laevo™) and in a control (no-BSE) condition. BSE use significantly increased center-of-pressure (COP) median frequency and mean velocity during bipedal stance. In unipedal stance, using the Laevo™ was associated with a significant improvement in postural balance, especially among males, as indicated by smaller COP displacement and sway area, and a longer time to contact the stability boundary. BSE use may affect postural balance, through translation of the human + BSE center-of-mass, restricted motion, and added supportive torques. Furthermore, larger effects of BSEs on postural balance were evident among males. Future work should further investigate the gender-specificity of BSE effects on postural balance and consider the effects of BSEs on dynamic stability.  相似文献   

18.
A study was designed to investigate the intra and intersession reliability during 1-leg standing recorded from a computerized balance platform. Thirty-nine healthy young men (n = 17, age range: 20-30 years) and women (n = 22, age range: 21-28 years) performed 3 testing sessions, with the second session 30 minutes (intrasession comparison) and the third session 1 week (intersession comparison) after the initial testing session. Within each testing session, participants completed 3 trials of 1-leg standing with their dominant leg. Reliability statistics were calculated using the mean of all 3 trials during each session for 6 balance measures (i.e., total displacements of the center of pressure [CoP], the CoP displacements in mediolateral and anterior-posterior directions, and the CoP speed and CoP area and their SD). Test-retest reliability was examined calculating both, intraclass correlation coefficient (ICC) with 95% confidence interval (95% CI) and Bland-Altman plots. In both sexes and irrespective of balance measure, ICC values were ≥0.75 except for 1 parameter in men. This indicates an excellent intra and intersession reliability. Bland-Altman plots confirmed these findings by showing that only 1 or 2 (4.5-11.8%) of the data points were beyond the 95% CI. Practitioners and clinicians are provided with a posturographic test setup that proved to be reliable. Researchers can use these data to identify the range in which the true value of a subject's score lies and estimate a priori sample sizes.  相似文献   

19.
20.

Background

Postural balance is vital for safely carrying out many daily activities, such as locomotion. The purpose of this study was to determine how changes in normal standing (NS) and standing with toe-extension (SWT) impact postural control during quiet standing. Furthermore, the research aimed to examine the extent to which the effect of these factors differed between genders.

Methodology/Principal Findings

Thirty healthy young adults (age = 21.2±1.3 y; height = 1.63±0.07 m; mass = 56.0±9.3 kg) with no prior lower limb injuries participated in the study. A postural stability test using the Biodex Balance System was used for both NS and SWT conditions. The three measurements from the BBS were Overall Stability Index (OSI), Medial-Lateral Stability Index (MLSI) and Anterior-Posterior Stability Index (APSI). No significant difference was found between NS and SWT in the OSI, MLSI or APSI (F 2, 28 = 3.357, p = 0.077). The main difference between the stability index scores was significant (F 2, 28 = 275.1, p<0.001). The Bonferroni post-hoc test showed significant differences between the OSI and MLSI (p<0.001); the OSI and APSI (p<0.001); and the MLSI and the APSI (p<0.001). Significant differences were found during NS (p<0.001), for the MLSI when compared with the APSI, but this was not found during the SWT condition. Additionally, no gender effects were proven to exist that altered postural sway during quiet standing.

Conclusions/Significance

This study reveals significant interaction between the stability indices measured; OSI, APSI and MLSI in both NS and SWT. Standing with toe extended does not have a significant impact on an individual’s ability to control their balance during normal quiet standing. However, the findings revealed that the sway tendency in the medial-lateral direction might serve as a factor in an individual’s ability to regain balance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号