首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The parasexual cycle with parameiosis has been characterized previously by the occurrence of genetic recombination and haploidization inside heterokaryotic hyphae prior to conidial formation. The aim of current research was to characterize, through genetic and cytological analyses, an asexual development mutant strain of A. nidulans and to use it to obtain parameiotic segregants. Analyses showed the medusa phenotype of the B84 strain, whose mutant allele was mapped in the chromosome I. The heterokaryons B84(med)//G422(med+) and B84(med)//G839(brl) were formed in liquid MM+2% CM and inoculated in the appropriate selective media. Two mitotic segregant groups were obtained: aneuploids and haploid stable recombinants. Mitotic segregants, wild-types, and developmental mutants, which did not produce new visible mitotic sectors in the presence of Benomyl and which showed normal meiotic behavior during the sexual cycle, were classified as parameiotics.  相似文献   

2.
3.
4.
5.
6.
C A D'Souza  B N Lee  T H Adams 《Genetics》2001,158(3):1027-1036
We showed previously that a DeltafluG mutation results in a block in Aspergillus nidulans asexual sporulation and that overexpression of fluG activates sporulation in liquid-submerged culture, a condition that does not normally support sporulation of wild-type strains. Here we demonstrate that the entire N-terminal region of FluG ( approximately 400 amino acids) can be deleted without affecting sporulation, indicating that FluG activity resides in the C-terminal half of the protein, which bears significant similarity with GSI-type glutamine synthetases. While FluG has no apparent role in glutamine biosynthesis, we propose that it has an enzymatic role in sporulation factor production. We also describe the isolation of dominant suppressors of DeltafluG(dsg) that should identify components acting downstream of FluG and thereby define the function of FluG in sporulation. The dsgA1 mutation also suppresses the developmental defects resulting from DeltaflbA and dominant activating fadA mutations, which both cause constitutive induction of the mycelial proliferation pathway. However, dsgA1 does not suppress the negative influence of these mutations on production of the aflatoxin precursor, sterigmatocystin, indicating that dsgA1 is specific for asexual development. Taken together, our studies define dsgA as a novel component of the asexual sporulation pathway.  相似文献   

7.
Aspergillus nidulans rcoA encodes a member of the WD repeat family of proteins. The RcoA protein shares sequence similarity with other members of this protein family, including the Saccharomyces cerevisiae Tup1p and Neurospora crassa RCO1. Tup1p is involved in negative regulation of an array of functions including carbon catabolite repression. RCO1 functions in regulating pleiotropic developmental processes, but not carbon catabolite repression. In A. nidulans, deletion of rcoA (DeltarcoA), a recessive mutation, resulted in gross defects in vegetative growth, asexual spore production and sterigmatocystin (ST) biosynthesis. Expression of the asexual and ST pathway-specific regulatory genes, brlA and aflR, respectively, but not the signal transduction genes (i.e. flbA, fluG or fadA) regulating brlA and aflR expression was delayed (brlA) or eliminated (aflR) in a DeltarcoA strain. Overexpression of aflR in a DeltarcoA strain could not rescue normal expression of downstream targets of AflR. CreA-dependent carbon catabolite repression of starch and ethanol utilization was only weakly affected in a DeltarcoA strain. The strong role of RcoA in development, vegetative growth and ST production, compared with a relatively weak role in carbon catabolite repression, is similar to the role of RCO1 in N. crassa.  相似文献   

8.
9.
10.
11.
12.
Polyketide synthases (PKSs) and/or nonribosomal peptide synthetases (NRPSs) are central components of secondary metabolism in bacteria, plants, and fungi. In filamentous fungi, diverse PKSs and NRPSs participate in the biosynthesis of secondary metabolites such as pigments, antibiotics, siderophores, and mycotoxins. However, many secondary metabolites as well as the enzymes involved in their production are yet to be discovered. Both PKSs and NRPSs require activation by enzyme members of the 4'-phosphopantetheinyl transferase (PPTase) family. Here, we report the isolation and characterization of Aspergillus nidulans strains carrying conditional (cfwA2) and null (DeltacfwA) mutant alleles of the cfwA gene, encoding an essential PPTase. We identify the polyketides shamixanthone, emericellin, and dehydroaustinol as well as the sterols ergosterol, peroxiergosterol, and cerevisterol in extracts from A. nidulans large-scale cultures. The PPTase CfwA/NpgA was required for the production of these polyketide compounds but dispensable for ergosterol and cerevisterol and for fatty acid biosynthesis. The asexual sporulation defects of cfwA, DeltafluG, and DeltatmpA mutants were not rescued by the cfwA-dependent compounds identified here. However, a cfwA2 mutation enhanced the sporulation defects of both DeltatmpA and DeltafluG single mutants, suggesting that unidentified CfwA-dependent PKSs and/or NRPSs are involved in the production of hitherto-unknown compounds required for sporulation. Our results expand the number of known and predicted secondary metabolites requiring CfwA/NpgA for their biosynthesis and, together with the phylogenetic analysis of fungal PPTases, suggest that a single PPTase is responsible for the activation of all PKSs and NRPSs in A. nidulans.  相似文献   

13.
Microbial secondary metabolite production is frequently associated with developmental processes such as sporulation, but there are few cases where this correlation is understood. Recent work with the filamentous fungus Aspergillus nidulans has provided new insights into the mechanisms coordinating production of the toxic secondary metabolite sterigmatocystin with asexual sporulation. These processes have been shown to be linked through a common need to inactivate a heterotrimeric G protein dependent signaling pathway that, when active, serves to stimulate growth while blocking both sporulation and sterigmatocystin biosynthesis.  相似文献   

14.
Asexual reproduction (conidiation) in Aspergillus nidulans is induced by environmental signals like exposure to air or nutrient starvation, and depends on brlA gene activation. The study of 'fluffy' mutants showing delayed asexual development and reduced brlA expression has defined the fluG pathway, involved in regulation of this differentiation process. Genetic characterization of a 'fluffy' mutant identified tmpA as a new gene involved in regulation of conidiation. TmpA defines a new family of putative transmembrane proteins of unknown function, widespread in filamentous fungi and plants, with homologues showing similarity to non-ribosomal peptide synthetases. The deletion of tmpA resulted in decreased brlA expression and conidiation in air-exposed colonies. This defect was suppressed when DeltatmpA mutants were grown next to wild-type or DeltafluG mutant colonies, even without direct contact between hyphae. In liquid culture, tmpA was essential for conidiation induced by nitrogen but not by carbon starvation, whereas the overexpression of different tmpA tagged alleles resulted in conidiation. The overexpression of fluG-induced conidiation independently of tmpA and DeltatmpADeltafluG double mutants showed an additive 'fluffy' phenotype, indicating that tmpA and fluG regulate asexual sporulation through different pathways. TmpA and its homologues appear to have diverged from the ferric reductase family, retaining overall transmembrane architecture, NAD(P), flavin adenine dinucleotide (FAD) and possibly haem-binding domains. Based on our results, we propose that TmpA is a membrane oxidoreductase involved in the synthesis of a developmental signal.  相似文献   

15.
Genetic regulation of development in Aspergillus nidulans   总被引:15,自引:0,他引:15  
  相似文献   

16.
构巢曲霉是丝状真菌的模式生物,已对其无性发育机制进行了比较充分的研究。本文以FluG-BrlA途径参与构巢曲霉无性发育机制的研究为切入点,综述了构巢曲霉无性发育中心调控路径中各主要成员如brlA、abaA、wetA,中心调控路径修饰基因如stuA、medA及中心调控路径激活因子fluG、flbA-E的研究进展,绘制出构巢曲霉无性发育相关基因遗传位置模式图。研究将为其它丝状真菌无性发育机制的研究提供参考。  相似文献   

17.
Aspergillus nidulans UDP-glucose-4-epimerase UgeA interconverts UDP-glucose and UDP-galactose and participates in galactose metabolism. The sugar moiety of UDP-galactose is predominantly found as galactopyranose (Galp, the six-membered ring form), which is the substrate for UDP-galactopyranose mutase (encoded by ugmA) to generate UDP-galactofuranose (Galf, the five-membered ring form) that is found in fungal walls. In A. fumigatus, Galf residues appear to be important for virulence. The A. nidulans ugeAΔ strain is viable, and has defects including wide, slow growing, highly branched hyphae and reduced conidiation that resemble the ugmAΔ strain. As for the ugmAΔ strain, ugeAΔ colonies had substantially reduced sporulation but normal spore viability. Conidia of the ugeAΔ strain could not form colonies on galactose as a sole carbon source, however they produced short, multinucleate germlings suggesting they ceased to grow from starvation. UgeA purified from an expression plasmid had a relative molecular weight of 40.6 kDa, and showed in vitro UDP-glucose-4-epimerase activity. Transmission electron microscope cross-sections of wildtype, ugeAΔ, and ugmAΔ hyphae showed they had similar cytoplasmic contents but the walls of each strain were different in appearance and thickness. Both deletion strains showed increased substrate adhesion. Localization of UgeA-GFP and UgmA-GFP was cytoplasmic, and was similar on glucose and galactose. Neither gene product had a longitudinal polarized distribution. Localization of a UgmA-mRFP in a strain that resembled the ugmAΔ strain was cytoplasmic and lacked a longitudinal polarized distribution. The roles of UgeA in A. nidulans growth and morphogenesis are consistent with the importance of Galf, and are related but not identical to the roles of UgmA.  相似文献   

18.
19.
Temperature-shift analysis of conidial development in Aspergillus nidulans   总被引:8,自引:0,他引:8  
Temperature-shift experiments have been performed on spore-originated colonies of 11 thermosensitive aconidial mutants of Aspergillus nidulans in order to determine the latest time of shift to the restrictive temperature that prevents the initiation of conidiation. This time defines the beginning of the thermosensitive period (TSP) of the mutant. Eight of the mutants have TSPs that begin in the 7-hour period (32–39 hr) just prior to the first appearance of conidia-bearing structures, while 3 of the mutants have TSPs that begin later and very close to the time of onset of conidiation (45 hr). Thus no mutant of the set has a TSP that begins during the first 32 hr of vegetative growth of spore-originated colonies. For all mutants, an upshift performed after the beginning of the TSP allows initiation of conidiation at close to the normal time and at the normal rate, but results in an abrupt cessation of conidiation at some fixed time after upshift, characteristic of the mutant. The mutant whose TSP begins the earliest (aco-49) is exceptional in that, if conidiation is suppressed by growth of colonies in submerged culture, this mutant becomes thermoinsensitive during vegetative submerged growth; in contrast, the remaining 10 mutants become thermoinsensitive only after the suppressive condition has been relieved. We discuss the possibility that this exceptional mutant is defective in a function required for initiation of the process that ultimately results in the formation of conidia.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号