首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of the hydrolysis of starch with beta-amylase and debranching enzymes was studied. The hydrolysis of the alpha-1, 6-glycoside bonds of the substrate by debranching enzymes does not create any new nonreducing ends, so debranching enzyme promotes the action of beta-amylase not by increasing the concentration of the substrate of beta-amylase but by increasing the linear linkage portion of the substrate. The introduction of an effective chain length function was used to formulate a kinetic model.  相似文献   

2.
Action of human small intestinal brush border carbohydrate digesting enzymes is thought to involve only final hydrolysis reactions of oligosaccharides to monosaccharides. In vitro starch digestibility assays use fungal amyloglucosidase to provide this function. In this study, recombinant N-terminal subunit enzyme of human small intestinal maltase-glucoamylase (rhMGAM-N) was used to explore digestion of native starches from different botanical sources. The susceptibilities to enzyme hydrolysis varied among the starches. The rate and extent of hydrolysis of amylomaize-5 and amylomaize-7 into glucose were greater than for other starches. Such was not observed with fungal amyloglucosidase or pancreatic alpha-amylase. The degradation of native starch granules showed a surface furrowed pattern in random, radial, or tree-like arrangements that differed substantially from the erosion patterns of amyloglucosidase or alpha-amylase. The evidence of raw starch granule degradation with rhMGAM-N indicates that pancreatic alpha-amylase hydrolysis is not a requirement for native starch digestion in the human small intestine.  相似文献   

3.
The beta-amylase from Clostridium thermosulfurogenes was readily adsorbed onto raw starch. The adsorbed beta-amylase was eluted from raw starch by using boiled soluble starch solution as an elutant. The soluble starch treated beta-amylase could not adsorb onto raw starch which indicates that the soluble and insoluble substrate binding sites of the beta-amylase may be the same. The beta-amylase was purified to homogeneity by raw starch adsorption-desorption techniques and octyl-Sepharose chromatography. It had a specific activity of 4188 units/mg protein. The insoluble substrate adsorption-desorption technique may be used for the purification of other enzymes.  相似文献   

4.
An extracellular glucoamylase [exo-1,4-α-d-glucosidase, 1,4-α-d-glucan glucohydrolase, EC 3.2.1.3] of Endomycopsis fibuligera has been purified and some of its properties studied. It had a very high debranching activity (0.63). The enzyme was completely adsorbed onto raw starch at all the pH values tested (pH 2.0–7.6). Amylase inhibitor from Streptomyces sp. did not prevent the adsorption of glucoamylase onto raw starch although the enzyme did not digest raw starch in the presence of amylase inhibitor. Sodium borate (0.1 m) eluted only 35% of the adsorbed enzyme from raw starch. The optimum pH for raw starch digestion was 4.5 whereas that of boiled soluble starch hydrolysis was 5.5. Waxy starches were more easily digested than non-waxy starches, and root starches were slowly digested by this enzyme.  相似文献   

5.
Adhesion of 19 Bifidobacterium strains to native maize, potato, oat, and barley starch granules was examined to investigate links between adhesion and substrate utilization and to determine if adhesion to starch could be exploited in probiotic food technologies. Starch adhesion was not characteristic of all the bifidobacteria tested. Adherent bacteria bound similarly to the different types of starch, and the binding capacity of the starch (number of bacteria per gram) correlated to the surface area of the granules. Highly adherent strains were able to hydrolyze the granular starches, but not all amylolytic strains were adherent, indicating that starch adhesion is not a prerequisite for efficient substrate utilization for all bifidobacteria. Adhesion was mediated by a cell surface protein(s). For the model organisms tested (Bifidobacterium adolescentis VTT E-001561 and Bifidobacterium pseudolongum ATCC 25526), adhesion appeared to be specific for alpha-1,4-linked glucose sugars, since adhesion was inhibited by maltose, maltodextrin, amylose, and soluble starch but not by trehalose, cellobiose, or lactose. In an in vitro gastric model, adhesion was inhibited both by the action of protease and at pH values of < or =3. Adhesion was not affected by bile, but the binding capacity of the starch was reduced by exposure to pancreatin. It may be possible to exploit adhesion of probiotic bifidobacteria to starch granules in microencapsulation technology and for synbiotic food applications.  相似文献   

6.
Adhesion of 19 Bifidobacterium strains to native maize, potato, oat, and barley starch granules was examined to investigate links between adhesion and substrate utilization and to determine if adhesion to starch could be exploited in probiotic food technologies. Starch adhesion was not characteristic of all the bifidobacteria tested. Adherent bacteria bound similarly to the different types of starch, and the binding capacity of the starch (number of bacteria per gram) correlated to the surface area of the granules. Highly adherent strains were able to hydrolyze the granular starches, but not all amylolytic strains were adherent, indicating that starch adhesion is not a prerequisite for efficient substrate utilization for all bifidobacteria. Adhesion was mediated by a cell surface protein(s). For the model organisms tested (Bifidobacterium adolescentis VTT E-001561 and Bifidobacterium pseudolongum ATCC 25526), adhesion appeared to be specific for α-1,4-linked glucose sugars, since adhesion was inhibited by maltose, maltodextrin, amylose, and soluble starch but not by trehalose, cellobiose, or lactose. In an in vitro gastric model, adhesion was inhibited both by the action of protease and at pH values of ≤3. Adhesion was not affected by bile, but the binding capacity of the starch was reduced by exposure to pancreatin. It may be possible to exploit adhesion of probiotic bifidobacteria to starch granules in microencapsulation technology and for synbiotic food applications.  相似文献   

7.
Ma YF  Eglinton JK  Evans DE  Logue SJ  Langridge P 《Biochemistry》2000,39(44):13350-13355
Barley beta-amylase undergoes proteolytic cleavage in the C-terminal region after germination. The implication of the cleavage in the enzyme's characteristics is unclear. With purified native beta-amylases from both mature barley grain and germinated barley, we found that the beta-amylase from germinated barley had significantly higher thermostability and substrate binding affinity for starch than that from mature barley grain. To better understand the effect of the proteolytic cleavage on the enzyme's thermostability and substrate binding affinity for starch, recombinant barley beta-amylases with specific deletions at the C-terminal tail were generated. The complete deletion of the four C-terminal glycine-rich repeats significantly increased the enzyme's thermostability, but an incomplete deletion with one repeat remaining did not change the thermostability. Although different C-terminal deletions affect the thermostability differently, they all increased the enzyme's affinity for starch. The possible reasons for the increased thermostability and substrate binding affinity, due to the removal of the four C-terminal glycine-rich repeats, are discussed in terms of the three-dimensional structure of beta-amylase.  相似文献   

8.
Thermophilic and amylolytic aerobic bacteria were isolated from soil through a selective enrichment procedure at 60 degrees C with starch as the carbon source. One of the isolates designated as HRO10 produced glucose aside from limit dextrin as the only hydrolysis product from starch and was characterized in detail. The starch-degrading enzymes produced by strain HRO10 were determined to be alpha-amylase and alpha-glucosidase. Whereas the alpha-amylase activity was detected exclusively in the culture supernatant, alpha-glucosidase occurred intracellular, extracellular, or on the surface of the bacteria depending on the growth phase. The optimum temperature and pH required for the growth of strain HRO10 were about 50 degrees C and pH 6.5 to 7.5. The strain used different carbohydrates as the carbon source, but the maximum production of alpha-amylase occurred when 1.0% (w/v) starch or dextrin was used. The use of organic vs. inorganic nitrogen favored the production of alpha-amylase in strain HRO10. The metal ions Li+, Mg2+, and Mn2+ stimulated the production of both enzymes. Identification of strain HRO10 by physiological and molecular methods including sequencing of the 16S rDNA showed that this strain belongs to the species Geobacillus thermodenitrificans. Biochemically, strain HRO10 differs from the type strain DSM 465 only in its ability to hydrolyze starch.  相似文献   

9.
Porcine pancreatic alpha-amylase activity on native starch granules is more accurately described as a function of surface area of the granules rather than of substrate concentration. The apparent K(m) of alpha-amylolysis of native starch from potato, maize, and rice expressed as a function of substrate concentration was largest for potato with a single value of V(max). However, the ratio of the slope of a Lineweaver-Burk plot to that of rice for enzymatic hydrolysis of native potato and maize starch were 7.78 and 2.58, respectively, which were very close to the ratio of surface area per mass of the two starch granules to that of rice. Therefore, the reciprocal of initial velocity was a linear function of the reciprocal of surface area for each starch granule. Surface area was calculated assuming the starch granules were spherical. The values obtained by this calculation were in good agreement with the value obtained by the photomicrographic method. By comparing enzymatic digestion of native maize granules to that of rice granules, it was concluded that the presence of pores in maize granules appeared to significantly affect overall rate of digestion after sufficient reaction time, but not at the very initial stage of hydrolysis.  相似文献   

10.
alpha-Glucosidases (EC 3.2.1.20) are recognized as important in starch degradation during cereal seed germination. A barley (Hordeum vulgare) alpha-glucosidase expressed in Pichia pastoris was cultured in flasks; however, the yield was low necessitating the use of multiple batches. Problems arose because of significant variation between batches. We solved these problems by switching to a fermentation system producing a sufficient quantity of a uniform sample. Here we present the expression and purification of a recombinant alpha-glucosidase grown under fermentation conditions. We also present the results of experiments to characterize the thermostability, pH optimum, and substrate specificity of the recombinant enzyme. The optimal pH for the hydrolysis of maltose by recombinant alpha-glucosidase is between 3.5 and 4.5. The thermostability of recombinant alpha-glucosidase was determined at pH 4, where activity is optimal, and at pH 5 and 6, which better mimic the conditions used to convert barley starch to fermentable sugars during industrial processing. The results indicate the enzyme is most thermolabile at pH 4. However, the enzyme is protected from heat inactivation at pH 4 by high concentrations of sucrose. The purified enzyme hydrolyzed maltose three times more rapidly than nigerose and 20 times more rapidly than trehalose and isomaltose. Concentrations of maltose greater than 20 mM inhibited maltose hydrolysis. This is the first report of substrate inhibition for any alpha-glucosidase. The results indicate that the only significant difference between the recombinant enzyme and the previously characterized barley isoforms was the V(max) for maltose hydrolysis.  相似文献   

11.
Sugar beet leaves (Beta vulgaris L.) contained up to five endoamylases, two exoamylases, and a single debranching enzyme. Four of the endoamylases and the debranching enzyme were present in the chloroplast. The chloroplastic starch-debranching enzyme and an apoplastic endoamylase were copurified from mature leaves of sugar beet by 35 to 50% ammonium sulfate precipitation and chromatography on diethylaminoethyl-Sephacryl, β-cyclodextrin Sepharose 6B, and Sephadex G-150. The debranching enzyme, which was purified to homogeneity, had a molecular mass of 100 kilodaltons and a pH optimum of 5.5. It showed a high activity with pullulan as a substrate, low activity with soluble starch and amylopectin, and no activity with native starch grains isolated from sugar beet leaves. The endoamylase, which was partially purified, had a molecular mass of 43,000 kilodaltons, a pH optimum of 6.5, required calcium for activity and thermal stability, and showed an ability to hydrolyze native starch grains.  相似文献   

12.
Barley was made into a normal and an over-modified malt, and the loss in starch was 14.6% and 67.7%, respectively. Starch granules, isolated from the barley and malts, were observed by scanning electron and light microscopes. In normal malt, 14% of the large granules were eroded and the small granules remained almost intact. In the case of over-modified malt, 38% of the large granules were eroded, and a marked reduction was found in the population of the small granules. Iodine affinities and blue values of the starches increased as malting proceeded. The malting of barley resulted in an apparent increase in the amylose component of the starch but hardly affected its molecular size distribution when examined by Bio-Gel A-50m column chromatography. The fine structures of the barley and malt amylopectins were compared by Shephadex G-50 and Bio-Gel P-2 column chromatographies after debranching with pullulanase. No change was observed during malting in spite of a significant reduction in the amylopectin component of the starch.  相似文献   

13.
An active derivative (mol. wt. 48,000) of Aspergillus sp. K-27 glucoamylase (mol. wt. 76,000) was obtained by limited proteolysis with subtilisin. The amino acid sequences of native and modified enzymes at the N-termini were Ala-Gly-Gly-Thr-Leu-Asp and Ala-Val-Leu, respectively. The proteolysis greatly decreased the affinity of the enzyme for amylopectin and glycogen, but not for oligosaccharides. It also reduced the ability of the enzyme to degrade raw starch, abolished the ability of the enzyme to adsorb onto starch granules, and eliminated the synergistic action of the enzyme in the hydrolysis of starch granules with alpha-amylase. These findings imply that the enzyme has a specific affinity site for polysaccharide substrates besides the catalytic site, i.e., a starch-binding site, and that the former is removed by proteolysis. The extent of the reduction in the activity for raw starches caused by the modification varied with the starch source, as the modified enzyme digested raw potato starch better than either raw corn or sweet potato starches. A new method for evaluation of the raw starch-digesting activity of glucoamylase is described.  相似文献   

14.
The distribution pattern of substituents within the granules and the components of two cationised and two oxidised potato starches was studied. The level of crystallinity in wet-cationised (WC) and hypochlorite oxidised (HO) starch granules was similar to that of native starch granules but lower in dry-cationised (DC) and peroxide oxidised (PO) granules. However, the melting temperature of DC granules remained similar to native granules but was decreased in the other samples. With all modified starches, the initial rate of acid hydrolysis (lintnerisation) was increased compared to native granules. The degree of substitution decreased only slightly in WC granules after the lintnerisation, whereas virtually all the substituted glucosyl units in DC starch were hydrolysed already at initial stages. The decrease of substituents in the HO and PO starches was intermediate. The starches were partly resistant to the action of isoamylase and the successive beta-amylolysis, suggesting that substituents were found both close to the branches and near the nonreducing ends in the amylopectin component. It is suggested that the DC starch was preferentially cationised at the surface of the granules, whereas WC and oxidised starches were modified throughout the granules.  相似文献   

15.
The kinetics of the hydrolysis of soluble starch by simultaneous use of beta-amylase and either isoamylase or pullulanse was studied experimentally for a wide range of subtrate and enzyme concentrations. A kinetic expression was constituted for maltose production by beta-armylase, which was stimulated by an increase in linear linkage portions due to the debranching enzyme on amylopectin molecules. As a result, calculations by the kinetic expression agreed with time course data under various conditions.  相似文献   

16.
The action of pancreatic alpha-amylase (EC 3.2.1.1) on various starches has been studied in order to achieve better understanding of how starch structural properties influence enzyme kinetic parameters. Such studies are important in seeking explanations for the wide differences reported in postprandial glycaemic and insulinaemic indices associated with different starchy foodstuffs. Using starches from a number of different sources, in both native and gelatinised forms, as substrates for porcine alpha-amylase, we showed by enzyme kinetic studies that adsorption of amylase to starch is of kinetic importance in the reaction mechanism, so that the relationship between reaction velocity and enzyme concentration [E0] is logarithmic and described by the Freundlich equation. Estimations of catalytic efficiencies were derived from measurements of kcat/Km performed with constant enzyme concentration so that comparisons between different starches were not complicated by the logarithmic relationship between E0 and reaction velocity. Such studies reveal that native starches from normal and waxy rice are slightly better substrates than those from wheat and potato. After gelatinisation at 100 degrees C, kcat/Km values increased by 13-fold (waxy rice) to 239-fold (potato). Phosphate present in potato starch may aid the swelling process during heating of suspensions; this seems to produce a very favourable substrate for the enzyme. Investigation of pre-heat treatment effects on wheat starch shows that the relationship between treatment and kcat/Km is not a simple one. The value of kcat/Km rises to reach a maximum at a pre-treatment temperature of 75 degrees C and then falls sharply if the treatment is conducted at higher temperatures. It is known that amylose is leached from starch granules during heating and dissolves. On cooling, the dissolved starch is likely to retrograde and become resistant to amylolysis. Thus the catalytic efficiency tends to fall. In addition, we find that the catalytic efficiency on the different starches varies inversely with their solubility and we interpret this finding on the assumption that the greater the solubility, the greater is the likelihood of retrogradation. We conclude that although alpha-amylase is present in high activity in digestive fluid, the enzymic hydrolysis of starch may be a limiting factor in carbohydrate digestion because of factors related to the physico-chemical properties of starchy foods.  相似文献   

17.
Starch, total alpha- and beta-amylase, and phosphorylase levels and the zymogram patterns of these 3 starch-degrading enzymes were determined in the cotyledons of smooth pea (Pisum sativum L.) during the first 15 days of germination. Starch is degraded slowly in the first 6 days; during this time, alpha-amylase is very low, beta-amylase is present at a constant level while phosphorylase gradually increases and reaches a peak on the fifth day. Beginning on the sixth day there is a more rapid degradation of starch which coincides with alpha-amylase production. One phosphorylase band and 2 beta-amylase bands are present in the zymogram of the imbibed cotyledon. An additional phosphorylase band and 1 alpha-amylase band appear during germination. Seeds imbibed in benzyladenine, chloramphenicol, and in cycloheximide show retarded growth and slower starch degradation and enzyme production than the controls. We conclude that alpha-amylase is the major enzyme involved in the initial degradation of starch into more soluble forms while phosphorylase and beta-amylase assist in the further conversion to free sugars.  相似文献   

18.
The present review describes the structural features of alpha-amylase, beta-amylase and glucoamylase that are the best known amylolytic enzymes. Although they show similar function, i.e. catalysis of hydrolysis of alpha-glucosidic bonds in starch and related saccharides, they are quite different. alpha-Amylase is the alpha --> alpha retaining glycosidase (it uses the retaining mechanism), and beta-amylase together with glucoamylase are the alpha --> beta inverting glycosidases (they use the inverting mechanism). While beta-amylase and glucoamylase form their own families 14 and 15, respectively, in the sequence-based classification of glycoside hydrolases, alpha-amylase belongs to a large clan of three families 13, 70 and 77 consisting of almost 30 different specificities. Structurally both alpha-amylase and beta-amylase rank among the parallel (beta/alpha)8-barrel enzymes, glucoamylase adopts the helical (alpha/alpha)6-barrel fold. The catalytic (beta/alpha)8-barrels of alpha-amylase and beta-amylase differ from each other. The only common sequence-structural feature is the presence of the starch-binding domain responsible for the binding and ability to digest raw starch. It is, however, present in about 10% of amylases and behaves as an independent evolutionary module. A brief discussion on structure-function and structure-stability relationships of alpha-amylases and related enzymes is also provided.  相似文献   

19.
The barley protein limit dextrinase inhibitor (LDI), structurally related to the alpha-amylase/trypsin inhibitor family, is an inhibitor of the starch debranching enzyme limit dextrinase (LD). In order to investigate the function of LDI, and the consequences for starch metabolism of reduced LDI activity, transgenic barley plants designed to downregulate LDI by antisense were generated. Homozygous antisense lines with reduced LDI protein level and activity were analysed and found to have enhanced free LD activity in both developing and germinating grains. In addition the antisense lines showed unpredicted pleiotropic effects on numerous enzyme activities, for example, alpha- and beta-amylases and starch synthases. Analysis of the starch showed much reduced numbers of the small B-type starch granules, as well as reduced amylose relative to amylopectin levels and reduced total starch. The chain length distribution of the amylopectin was modified with less of the longer chains (>25 units) and enhanced number of medium chains (10-15 units). These results suggest an important role for LDI and LD during starch synthesis as well as during starch breakdown.  相似文献   

20.
The principle of using a chemically synthesized, well-defined branched oligosaccharide to provide a more detailed knowledge of the substrate specificity of starch synthase II (SSII) is demonstrated. The branched nonasaccharide, 6"'-alpha-maltotriosyl-maltohexaose, was investigated as a primer for particulate SSII using starch granules prepared from the low-amylose pea mutant lam as the enzyme source. The starch granule preparation from the lam pea mutant contains no starch synthases other than SSII and is devoid of alpha-amylase, beta-amylase and phosphorylase activity. SSII was demonstrated to catalyse a specific nonprocessive elongation of the nonreducing end of the shortest unit chain of 6"'-alpha-maltotriosyl-maltohexaose, i.e. the maltotriose chain. Maltotriose and maltohexaose, representing the two linear building units of the branched nonasaccharide, were also tested as primers for SSII. Maltotriose was elongated more efficiently than 6"'-alpha-maltotriosyl-maltohexaose and maltohexaose was used less efficiently. Compared to the surface exposed alpha-glucan chains of the granule bound amylopectin molecules, all three soluble oligosaccharides tested were poor primers for SSII. This indicates that in vivo, the soluble oligosaccharides supposedly released as result of amylopectin trimming reactions are not re-introduced into starch biosynthetic reactions via the action of the granule bound fraction of SSII.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号