首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The Mfa1 protein of Porphyromonas gingivalis is the structural subunit of the short fimbriae and mediates coadhesion between P. gingivalis and Streptococcus gordonii. We utilized a promoter-lacZ reporter construct to examine the regulation of mfa1 expression in consortia with common oral plaque bacteria. Promoter activity of mfa1 was inhibited by S. gordonii, Streptococcus sanguinis and Streptococcus mitis. In contrast, Streptococcus mutans, Streptococcus cristatus, Actinomyces naeslundii, Actinobacillus actinomycetemcomitans and Fusobacterium nucleatum did not affect mfa1 expression. Expression of SspA/B, the streptococcal receptor for Mfa1, was not required for regulation of mfa1 promoter activity. Proteinaceous molecule(s) in oral streptococci may be responsible for regulation of Mfa1 expression. Porphyromonas gingivalis is capable of detecting heterologous organisms, and responds to selected organisms by specific gene regulation.  相似文献   

3.
《Anaerobe》2001,7(5):255-262
Porphyromonas gingivalis is a Gram-negative oral anaerobe considered to be a major pathogen in adult periodontitis. One of the noted virulence factors of this bacterium is its unique fimbriae, which are composed of FimA (fimbrilin) as a major subunit. We have recently identified and isolated two essential genes, fimS and fimR, for fimbriation of P. gingivalis from transposon-mutagenesis studies. The genes encode two components of a His–Asp phosphorelay system, FimS as a sensor histidine kinase and FimR as a response regulator. Disruption of either gene causes fimbrial deficiency in this organism. In this study, the expression of FimR protein was detected in various P. gingivalis strains. In addition, a fragment containing fimR with a possible promoter was introduced into the fimR -disruption mutant, using a shuttle vector, pT-COW. The transconjugant recovered both FimR and FimA expression at levels comparable to the parentP. gingivalis ATCC 33277. Furthermore, characteristic fimbrial structures were clearly observed around the cell surface of both parent and transconjugant cells under electron microscopy. This is the first successful complementation experiment in P. gingivalis. These results show that the FimR protein is essential as a positive regulator in fimbriation of P. gingivalis.  相似文献   

4.
The periodontal pathogen Porphyromonas gingivalis colonizes largely through FimA fimbriae, composed of polymerized FimA encoded by fimA. fimA exists as a single copy within the fim gene cluster (fim cluster), which consists of seven genes: fimX, pgmA and fimA-E. Using an expression vector, fimA alone was inserted into a mutant from which the whole fim cluster was deleted, and the resultant complement exhibited a fimbrial structure. Thus, the genes of the fim cluster other than fimA were not essential for the assembly of FimA fimbriae, although they were reported to influence FimA protein expression. It is known that there are various genotypes for fimA, and it was indicated that the genotype was related to the morphological features of FimA fimbriae, especially the length, and to the pathogenicity of the bacterium. We next complemented the fim cluster-deletion mutant with fimA genes cloned from P. gingivalis strains including genotypes I to V. All genotypes showed a long fimbrial structure, indicating that FimA itself had nothing to do with regulation of the fimbrial length. In FimA fimbriae purified from the complemented strains, types I, II, and III showed slightly higher thermostability than types IV and V. Antisera of mice immunized with each purified fimbria principally recognized the polymeric, structural conformation of the fimbriae, and showed low cross-reactivity among genotypes, indicating that FimA fimbriae of each genotype were antigenically different. Additionally, the activity of a macrophage cell line stimulated with the purified fimbriae was much lower than that induced by Escherichia coli lipopolysaccharide.  相似文献   

5.
6.
7.
8.
Porphyromonas gingivalis, a gram-negative oral anaerobic bacterium, has been implicated in the onset and development of periodontitis. The P. gingivalis fimbriae which mediate bacterial adherence to host oral sites and induce host inflammatory responses have been suggested as a potential antigen candidate. for vaccine development. This study was undertaken to generate Streptococcus gordonii vectors expressing the major subunit protein (FimA) of P. gingivalis fimbriae for testing as a potential live vaccine against periodontitis. We report here the expression of the C-terminal saliva-binding epitopes of P. gingivalis FimA on the surface of S. gordonii and demonstrate that domains containing free cysteine residues are poorly expressed on the surface of S. gordonii.  相似文献   

9.
10.
Porphyromonas gingivalis, a periodontopathogen, is an oral anaerobic gram-negative bacterium with numerous fimbriae on the cell surface. Fimbriae have been considered to be an important virulence factor in this organism. We analyzed the genomic DNA of transposon-induced, fimbria-deficient mutants derived from ATCC 33277 and found that seven independent mutants had transposon insertions within the same restriction fragment. Cloning and sequencing of the disrupted region from one of the mutants revealed two adjacent open reading frames (ORFs) which seemed to encode a two-component signal transduction system. We also found that six of the mutants had insertions in a gene, fimS, a homologue of the genes encoding sensor kinase, and that the insertion in the remaining one disrupted the gene immediately downstream, fimR, a homologue of the response regulator genes in other bacteria. These findings suggest that this two-component regulatory system is involved in fimbriation of P. gingivalis.  相似文献   

11.
The gram-negative anaerobic bacterium Porphyromonas gingivalis is an etiologically important pathogen for chronic periodontal diseases in adults. Our previous study suggested that the major structural components of both Fim and Mfa fimbriae in this organism are secreted through their lipidated precursors. In this study, we constructed Escherichia coli strains expressing various fimA genes with or without the 5'-terminal DNA region encoding the signal peptide, and we determined whether lipidation of recombinant FimA proteins occurred in E. coli. Lipidation occurred for a recombinant protein from the fimA gene with the 5'-terminal DNA region encoding the signal peptide but not for a recombinant protein from the fimA gene without the signal-peptide-encoding region, as revealed by [3H]palmitic acid labeling experiments. A TLR2-dependent signaling response was induced by the recombinant protein from the fimA gene with the signal-peptide-encoding region but not by a recombinant protein from the fimA gene with the signal-peptide-encoding region that had a base substitution causing an amino acid substitution (C19A). Electron microscopic analysis revealed that recombinant FimA (A-47?- W-383) protein was autopolymerized to form filamentous structures of about 80?nm in length in vitro. The results suggest that FimA protein, a major subunit of Fim fimbriae, is transported to the outer membrane by the lipoprotein sorting system, and a mature or processed FimA protein on the outer membrane is autopolymerized to form Fim fimbriae.  相似文献   

12.
Bacterial fimbriae are an important pathogenic factor. It has been demonstrated that fimbrial protein encoded by fimA gene (FimA fimbriae) of Porphyromonas gingivalis not only contributes to the abilities of bacterial adhesion and invasion to host cells, but also strongly stimulates host innate immune responses. However, FimA fimbriae separated from P. gingivalis ATCC 33277 using a gentle procedure showed very weak proinflammatory activity compared with previous reports. Therefore, in the present study, biological characteristics of FimA fimbriae were further analyzed in terms of proinflammatory activity in macrophages. Macrophages differentiated from THP-1 cells were stimulated with native, heat-denatured, or either proteinase- or lipoprotein lipase-treated FimA fimbriae of P. gingivalis ATCC 33277. Stimulating activities of these FimA fimbriae were evaluated by TNF-α-inducing activity in the macrophages. To clarify the mode of action of FimA fimbriae, anti-Toll-like receptor (TLR) 2 blocking antibody was added prior to stimulation. Weak stimulatory activity of native FimA fimbriae was enhanced by heat treatment and low-dose proteinase K treatment. Higher dose of proteinase K treatment abrogated this up-regulation. The activity of treated FimA fimbriae was suppressed by anti-TLR2 antibody, and more substantially by lipoprotein lipase treatment. These results suggest that lipoproteins or lipopeptides associated with FimA fimbriae could at least in part account for signaling via TLR2 and subsequent TNF-α production in macrophages.  相似文献   

13.
14.
15.
Porphyromonas gingivalis, a gram-negative obligate anaerobic bacterium, is considered to be a key pathogen in periodontal disease. The bacterium expresses Mfa1 fimbriae, which are composed of polymers of Mfa1. The minor accessory components Mfa3, Mfa4, and Mfa5 are incorporated into these fimbriae. In this study, we characterized Mfa4 using genetically modified strains. Deficiency in the mfa4 gene decreased, but did not eliminate, expression of Mfa1 fimbriae. However, Mfa3 and Mfa5 were not incorporated because of defects in posttranslational processing and leakage into the culture supernatant, respectively. Furthermore, the mfa4-deficient mutant had an increased tendency to auto-aggregate and form biofilms, reminiscent of a mutant completely lacking Mfa1. Notably, complementation of mfa4 restored expression of structurally intact and functional Mfa1 fimbriae. Taken together, these results indicate that the accessory proteins Mfa3, Mfa4, and Mfa5 are necessary for assembly of Mfa1 fimbriae and regulation of auto-aggregation and biofilm formation of P. gingivalis. In addition, we found that Mfa3 and Mfa4 are processed to maturity by the same RgpA/B protease that processes Mfa1 subunits prior to polymerization.  相似文献   

16.
Increasing evidence has shown periodontal pathogen Porphyromonas gingivalis (P.gingivalis) infection contributes to atherosclerosis (AS) progression. P.gingivalis fimbriae act as an important virulence factor in AS. Regulatory T cells (Tregs) may play a crucial role in autoimmune response during this process. However, whether P.gingivalis infection is associated with Tregs dysregulation during AS is still unknown and the prevalence of different P.gingivalis FimA genotypes during this process is unclear. Here we analyzed the distribution of Tregs and in P.gingivalis-infected atherosclerotic patients to reveal the relationship between P.gingivalis infection and Tregs reduction/dysfunction and to elucidate their role in periodontitis-AS interaction. FimA genotype was also examined to determine the prevalence of fimbriae. Our results showed that P.gingivalis infection reduced Tregs in atherosclerotic patients compared with non-atherosclerotic patients and health controls. Concentration of TGF-β1, which plays an important role in the development of Tregs, also decreased in P.gingivalis infected patients. Furthermore, type II FimA seems to show higher prevalence than the other five detected types. The population of Tregs further decreased in patients with type II FimA compared with the other types. P.gingivlias FimA genotype II was the dominant type associated with decreased Treg population. These results indicate that P.gingivalis infection may be associated with Tregs dysregulation in AS; type II FimA may be a predominant genotype in this process.  相似文献   

17.
Porphyromonas gingivalis is an oral/systemic pathogen implicated in chronic conditions, although the mechanism(s) whereby it resists immune defenses and persists in the host is poorly understood. The virulence of this pathogen partially depends upon expression of fimbriae comprising polymerized fimbrillin (FimA) associated with quantitatively minor proteins (FimCDE). In this study, we show that isogenic mutants lacking FimCDE are dramatically less persistent and virulent in a mouse periodontitis model and express shorter fimbriae than the wild type. Strikingly, native fimbriae allowed P. gingivalis to exploit the TLR2/complement receptor 3 pathway for intracellular entry, inhibition of IL-12p70, and persistence in macrophages. This virulence mechanism also required FimCDE; indeed, mutant strains exhibited significantly reduced ability to inhibit IL-12p70, invade, and persist intracellularly, attributable to failure to interact with complement receptor 3, although not with TLR2. These results highlight a hitherto unknown mechanism of immune evasion by P. gingivalis that is surprisingly dependent upon minor constituents of its fimbriae, and support the concept that pathogens evolved to manipulate innate immunity for promoting adaptive fitness and thus their capacity to cause disease.  相似文献   

18.
The gram-negative anaerobic oral bacterium Porphyromonas gingivalis initiates periodontal disease through fimbrial attachment to saliva-coated oral surfaces. To study the effects of immunomodulation on enhancement of subunit vaccination, the expression in E. coli and immunogenicity of P. gingivalis fimbrial protein (FimA) linked to the C-terminus of the cholera toxin B subunit (CTB) were investigated. Complementary DNAs encoding the P. gingivalis 381 fimbrillin protein sequence FimA1 (amino acid residues 1-200) and FimA2 (amino acid residues 201-337) were cloned into an E. coli expression vector downstream of a cDNA fragment encoding the immunostimulatory CTB. CTB-FimA1 and CTB-FimA2 fusion proteins synthesized in E. coli BL21 (DE3) cells were purified under denaturing conditions by Ni2+-NTA affinity column chromatography. Renaturation of the CTB-FimA1 and CTB-FimA2 fusion proteins, permitted identification of CTB-FimA pentamers and restored CTB binding activity to GM1-ganglioside to provide a biologically active CTB-FimA fusion protein. Mice orally inoculated with purified CTB-FimA1 or CTB-FimA2 fusion proteins generated measurable FimA1 and FimA2 IgG antibody titers, while no serum fimbrial IgG antibodies were detected when mice were inoculated with FimA1 or FimA2 proteins alone. Immunoblot analysis confirmed that sera from mice immunized with CTB linked to FimA1 or FimA2 contained antibodies specific for P. gingivalis fimbrial proteins. In addition, mice immunized with FimA2 or CTB-FimA2 generated measurable intestinal IgA titers indicating the presence of fimbrial antibody class switching. Further, mice orally immunized with CTB-FimA1 generated higher IgA antibody titers than mice inoculated with FimA1 alone. The experimental data show that the immunostimulatory molecule CTB enhances B cell-mediated immunity against linked P. gingivalis FimA fusion proteins, in comparison to immunization with FimA protein alone. Thus, linkage of CTB to P. gingivalis fimbrial antigens can increase subunit vaccine immunogenicity to provide enhanced protection against periodontal disease.  相似文献   

19.
Sojar HT  Sharma A  Genco RJ 《Biochimie》2004,86(4-5):245-249
Porphyromonas gingivalis is a likely major pathogen in adult periodontitis. Fimbriae in particular have been suggested as playing an important role in facilitating the initial interaction between the bacteria and the host and triggers host responses. Murakami et al. [Biochem. Biophys. Res. Commun. 192 (1993) 826] have shown that fimbriae of P. gingivalis strongly induced TNF-alpha gene expression in macrophages and expression of TNF-alpha was inhibited by N-acetyl-D-galactosamine, but not inhibited by other sugars. Studies by Sojar et al. [FEBS Lett. 422 (1998) 205] suggested that the oligosaccharide moiety of lactoferrin is involved in the interaction of P. gingivalis fimbriae and human lactoferrin. In the present study, purified fimbriae from P. gingivalis and neoglycoproteins were used to assess lectin-like interaction of fimbriae. In dot blot and overlay assays, iodinated purified P. gingivalis fimbriae as well as biotinylated purified P. gingivalis fimbriae bound strongly to albumin-fucosylamide (albumin-1-amido-1-deoxy-L-fucose) and by lesser extent to albumin-N-acetyl-D-galactosamine (albumin-p-aminophenyl-N-acetyl-beta-D-galactosaminide). However, fimbriae failed to bind carbohydrate free bovine serum albumin, which was used in preparation of the neoglycoproteins. These results suggests that P. gingivalis fimbriae bind to glycoconjugates through lectin-like interaction with carbohydrate. This protein-carbohydrate interactions may be important for triggering events in these cells, which mediate the host response of this pathogen.  相似文献   

20.
Two types of adhesive fimbriae are expressed by Actinomyces; however, the architecture and the mechanism of assembly of these structures remain poorly understood. In this study we characterized two fimbrial gene clusters present in the genome of Actinomyces naeslundii strain MG-1. By using immunoelectron microscopy and biochemical analysis, we showed that the fimQ-fimP-srtC1-fimR gene cluster encodes a fimbrial structure (designated type 1) that contains a major subunit, FimP, forming the shaft and a minor subunit, FimQ, located primarily at the tip. Similarly, the fimB-fimA-srtC2 gene cluster encodes a distinct fimbrial structure (designated type 2) composed of a shaft protein, FimA, and a tip protein, FimB. By using allelic exchange, we constructed an in-frame deletion mutant that lacks the SrtC2 sortase. This mutant produces abundant type 1 fimbriae and expresses the monomeric FimA and FimB proteins, but it does not assemble type 2 fimbriae. Thus, SrtC2 is a fimbria-specific sortase that is essential for assembly of the type 2 fimbriae. Together, our experiments pave the way for several lines of molecular investigation that are necessary to elucidate the fimbrial assembly pathways in Actinomyces and their function in the pathogenesis of different biofilm-related oral diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号