首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ionic mechanisms of the transmembrane current evoked by injection of cyclic AMP into identified neurons ofHelix pomatia were investigated by the voltage clamp method. Injection of cyclic AMP into neurons RPa3, LPa2, LPa3, and LPl1 was shown to cause the development of a two-component transmembrane (cyclic AMP) current. The current-voltage characteristic curve of the early component is linear in the region from –40 to –90 mV; the reversal potential of the early component, determined by extrapolation, lies between –5 and +20 mV; the current-voltage characteristic curve of the late component also is linear and has a reversal potential between –55 and –60 mV. A decrease in the sodium concentration in the external medium from 100 to 25 mM led to a decrease in amplitude of the cyclic AMP current and to a shift of the reversal potential for the early component by 30–32 mV toward hyperpolarization. It is suggested that the early component of the cyclic AMP current in neurons RPa3, LPa2, LPa3, and LPl1 is associated with an increase in permeability of the neuron membrane chiefly for sodium ions, whereas the late component is correspondingly connected with permeability for potassium ions. Injection of cyclic AMP also caused the appearance of a transmembrane inward current in neuron LPa8, but it was independent of the holding potential and was unaccompanied by any change in membrane permeability. It is suggested that this current may be due to a change in the activity of the electrogenic ion pump.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 12, No. 5, pp. 526–532, September–October, 1980.  相似文献   

2.
Dyatlov  V. A. 《Neurophysiology》1988,20(5):489-492
The role of calcium ions in modulating serotonin action on acetylcholine (ACh) response in nonidentified and identified (LPa3 and RPa3) neurons ofHelix pomatia was investigated using voltage-clamping at the neuronal membrane. Exposure for 1 min to serotonin prior to ACh application reduced response to ACh in neuron LPa3 and raised it in RPa3. The same two patterns of modulating ACh-induced response were produced by extracellular application of theophylline and dibutyryl c-AMP. Injecting calcium ions into neuron LPa3 led to reinforcement of ACh-induced current in the presence of serotonin, thus changing the pattern of serotonin-induced modulation of ACh response in this unit. In neuron RPa3, the same process enhanced the serotonin-induced modulating effect on ACh response but without changing the pattern of modulation, while injected EDTA produced the reverse effects. Increased intracellular concentration of calcium ions brought about a reduction in the degree of serotonin-induced modulation of ACh response in neuron RPa3. Possible reasons are discussed for changes in serotonin-induced bimodal modulation of ACh response in test neurons produced by altering the extracellular concentration of calcium ions.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 20, No. 5, pp. 666–671, September–October, 1988.  相似文献   

3.
The role the Na/Ca-exchange and intracellular Ca2+ released from Ca(2+)-depots in the modulatory action of Na,K-pump inhibitor ouabain on cholinosensitivity in the command neurons of Helix lucorum was studied in a cellular analogue of habituation. The integral transmembrane inward currents in LPa2, LPa3, RPa3, and RPa2 neurons were recorded in Helix lucorum ganglia preparation using two-electrode voltage clamp technique. The reduction of cholinosensitivity of a neuron was estimated as a depth of the depression of the acetylcholine-induced inward currents during the rhythmic local acetylcholine applications (with the interstimulus interval of 2-4 min) on a somatic membrane. The inhibitor of the Na/Ca-exchange benzamil (the extracellular action, 15-35 mcM) and two specific inhibitors of Ca-ATPase in the sarcoplasmic and endoplasmic reticulum, cyclopiazonic acid and thapsigargin (intracellular injection by spontaneous diffusion, 0.1 mM) prevented the modification of the depression of acetylcholine-induced current by ouabain (100 mcM) during the rhythmic application of acetylcholine. A conclusion is drawn that the inhibitor of the Na,K-pump ouabain modifies the depression of neuron cholinosensitivity in the cellular analogue of habituation via the Na/Ca-exchange and intracellular Ca2+ released from Ca2+ depots.  相似文献   

4.
Neuron RPa2 ofHelix pomatia can generate rhythmic (beating) or periodic (bursting) activity. A spontaneous switch from beating to bursting activity takes place in the course of tens of minutes. Similar changes in electrical activity can be induced by the addition of the water-soluble fraction obtained from a homogenate of snail ganglia to the experimental chamber. Artificial polarization of the membrane of neuron RPa2 by asteady inward current leads to an increase in the duration of intervals between bursts and to a decrease in the number of action potentials in the burst. With an increase in amplitude of the polarizing current, action potential generation ceases completely, but generation of waves of membrane potential persists. If the voltage on the neuron membrane is clamped, periodic fluctuations of membrane current disappear. It is suggested that action potential generation by neurons RPa2 is determined by the properties of the potential-dependent conductance of its membrane, i.e., that it is endogenous in origin and can be regulated by compounds acting on the membrane. These compounds, secreted by other neurons, resemble neurotransmitters or neurohormones.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 13, No. 4, pp. 406–412, July–August, 1981.  相似文献   

5.
The effect of intracellular injection of cyclic AMP (cAMP) and extracellular application of theophylline on the inward calcium current was investigated in neurons RPa3 and LPa3 ofHelix pomatia. Iontophoretic injection of cyclic AMP (current 10–35 nA, duration about 1 min) led to a decrease in amplitude of the calcium current to a new stationary level, which depended on the injection current. After the end of injection the calcium current was restored to its initial level. Current-voltage characteristic curves of the calcium current were not shifted along the voltage axis by cAMP injection, indicating that the reduction in this current was connected with a change in maximal calcium conductance. An increase in the frequency of depolarizing shifts from 0.1 to 0.5 Hz caused a decrease in the calcium current but did not affect the time course of the decrease in calcium current in response to injection of cAMP or the time course of its recovery after the end of injection. Theophylline an inhibitor of cyclic nucleotide phosphodiesterase, in a concentration of 1 mM in the external solution, lowered the amplitude of the calcium current by 50–75% of its initial value. In 40% of neurons, abolition of the action of theophylline by rinsing was incomplete, but in the rest the effect of theophylline was irreversible. It is postulated on the basis of the results that cytoplasmic compounds take part in regulation of the calcium current of molluscan neurons. The possible physiological role of this process is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 14, No. 3, pp. 290–297, May–June, 1982.  相似文献   

6.
The retention of the long-term sensitization (LTS) of defensive reflex and dynamics of change in electric characteristics (membrane potential (Vm) and action potential generation threshold (Vt)) of command neurons of defensive reflex was studied in a snail during behavioral tests. The membrane mechanisms were analyzed by measuring electrical characteristics of the LPa3, RPa3, LPa2, and RPa2 command neurons on the 1st, 4th, 7th, 10th, and 14th days after the LTS formation and 1 month later. The membrane potential and threshold potential in sensitized snails (-54.1 +/- 2.0 and 24.5 +/- 1.4 microV, respectively) were significantly (p < 0.001) decreased in comparison with the control animals (-60.9 +/- 0.8 and 19.9 +/- 0.6 microV respectively). These changes retained within 14 days after the LTS formation. The results suggest the long-term retention of the increased excitability of command neurons. A month after the LTS formation, the duration of the defensive reflex returned to the initial level and the electric characteristics of command neurons did not significantly differ from the control (-61.1 +/- 2.0 and 19.3 +/- 1.4 microV, respectively).  相似文献   

7.
The effect of theophylline, an inhibitor of cyclic nucleotide phosphodiesterase, on electrical activity of bursting neuron RPa1 ofHelix pomatia was investigated. In a concentration of 1 mM theophylline, when added to the external solution, increases the frequency and number of action potentials in the burst and also the duration of the inter-burst interval and the amplitude of membrane potential waves. In concentrations of 2.5 and 5.0 mM theophylline leads to reversible inhibition of bursting activity. During rinsing this activity rises to a higher level and then returns to the original value. The action of theophylline develops and disappears (as a result of rinsing) in the course of 1–5 min, depending on concentration of the inhibitor. It is suggested that electrical activity of the molluscan bursting neuron is controlled through the cyclic nucleotide system.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 13, No. 1, pp. 75–79, January–February, 1981.  相似文献   

8.
Membrane hyperpolarization induced by short pulses of inward current, by stimulation of the anal nerve, which leads to the appearance of a long IPSP in the neuron, and developing during the appearance of spontaneous IPSPs in the neuron was investigated in neuron RPa1 ofHelix pomatia. Short-term hyperpolarization of the neuron membrane by an inward current (10 msec) led to the development of self-maintained (regenerative) membrane hyperpolarization lasting several seconds. The amplitude and duration of regenerative hyperpolarization increased with an increase in amplitude and duration of the pulse of inward current. The time course of IPSPs arising spontaneously in the neuron and in response to stimulation of the anal nerve was similar to that of regenerative hyperpolarization evoked by a pulse of inward current. It is suggested that regenerative hyperpolarization associated with activation of endogenous mechanisms of regulation of the bursting activity of the neuron may be due not only to short-term membrane hyperpolarization of the test neuron by the electric current, but also to hyperpolarization occurring during IPSP generation.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 13, No. 1, pp. 67–74, January–February, 1981.  相似文献   

9.
The influence of 5,6-dihydroxytryptamine (5,6-DHT), which selectively destroyed serotonin terminals, and p-chlorphenylalanine, which inhibited serotonin synthesis, was studied on the long-term sensitization (LTS) in a snail. The membrane mechanisms were analyzed by measuring electrical characteristics of command neurons of defensive behavior LPa3, RPa3, LPa2, and RPa2. Snails injected with saline served as an active control. It was shown that the injected drugs inhibited the LTS in certain concentrations. A significant increase was observed in the membrane potential and the threshold of the action potential generation in the command neurons after 5,6-DHT injection in the doses of 20 and 30 mg/kg (in comparison with the active control). Sensitization of snails injected with saline solution led to the LTS and decrease in the membrane and threshold potentials of the command neurons. After the LTS, changes in membrane and threshold potentials in snails injected with 5,6-DHT were negligible in comparison with those injected with 5,6-DHT but without the LTS. Neither the LTS nor subsequent learning resulted in a further decrease in membrane and threshold potentials. Thus, the neurotoxin injection led to an increase in excitability of command neurons and their depolarization, and the LDS did not elicit further excitability increase. Since the shifts of the threshold and membrane potentials were the same, it was concluded that the increase in membrane excitability was induced by the depolarizing shift of the membrane potential.  相似文献   

10.
In Helix lucorum snail we studied the effects of ouabain, inhibitor of Na,K-pump, on the depression of cholinosensitivity in command neurons of withdrawal behavior and the role of the intracellular free Ca2+. The cellular analog of the negative learning (habituation) was used Transmembrane integral inward currents were recorded from the identified LPa2, LPa3, RPa3, and RPa2 neurons in ganglia preparation using two-electrode voltage clamp technique. Acetylcholine (ACh) was locally applied iontophoretically. Reduction of neuronal cholinosensitivity was estimated as a depth of depression of the ACh-induced inward current during rhythmic local application of ACh (interstimulus interval of 1-3 min) onto the somatic membrane. Bath application of ouabain (0.1 mM) produced an increase in depression in one group of neurons and its decrease in another group. After 60-150 min of spontaneous diffusion of a calcium ion chelator BAPTA (1 mM) from the intracellular microelectrode, ouabain produced only the increase in depression. If CaCl2 (100 mM) was added to the solution of the voltage-recording intracellular microelectrode, 60 min later ouabain produced only the reduction of the depression of the ACh current. The conclusion is drawn that the inhibition of the Na,K-pump by ouabain modifies the depression of neuronal cholinosensitivity in the cellular analog of habituation. The direction of the modulatory effect depends on the basal concentration of the intracellular free Ca2+.  相似文献   

11.
Extracellular application of oxytocin, Lys-vasopressin, and Leu-enkephalin to neuron RPa1 ofHelix pomatia evoked the generation of pacemaker potentials and the appearance of potentiation of spike activity of bursting type, characteristic of this cell. Noradrenalin and prostaglandins of the E group had a similar action. Dibutyryl-cyclic AMP, the phosphodiesterase inhibitor papaverine, and sodium fluoride, a nonspecific activator of adenylate cyclase, also initiated or potentiated bursting discharges of the neuron. It is suggested that the effects of oxytocin, Lys-vasopressin, Leu-enkephalin, noradrenalin, and prostaglandins of the E group are mediated through intracellular processes linked with activation of adenylate cyclase by these substances, leading to an increase in the cyclic AMP content in the nerve cell.P. K. Anokhin Research Institute of Normal Physiology, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 13, No. 1, pp. 80–87, January–February, 1981.  相似文献   

12.
The connection between an interneuron initiating pacemaker activity in the bursting RPa1 neuron and the bursting neuron itself (Pin and Gola, 1983) has been analyzed in the snail Helix pomatia. Prolonged depolarization of the interneuronal membrane produced in it a series of action potentials as well as a parallel initiation or enhancement of bursting activity in the RPa1 neuron. If the discharge in the interneuron was evoked by short current pulses of threshold amplitude, no bursting activity was seen in the RPa1 neuron. However, short stimuli delivered on the background of subthreshold depolarization of the interneuronal membrane produced bursting activity in the RPa1 neuron. Under voltage-clamp conditions a slow inward current could be recorded in the RPa1 neuronal membrane after stimulation of the interneuron with a latency of about 2 sec. Short shifts of the holding potential in the hyperpolarizing direction at the maximum of this current produced a transient outward current. Replacement of extracellular Ca2+ by Mg2+ ions, as well as addition of 1 mM CdCl2 to the external solution, prevented the response to the interneuronal stimulation in the RPa1 neuron. Electron microscopic investigation of the interneuron has shown the abundance of Golgi complexes in its cytoplasm with electron-dense granules in their vicinity. It is concluded that the connection between the interneuron and the bursting neuron is of chemical origin, based on secretion by the former of some substances which activate at least two types of ionic channels in the membrane of the RPa1 neuron.  相似文献   

13.
The effects of serotonin (5-HT) added to the washing solution on the plastic properties of the electroexcitable membrane of nonidentified neurons of the parietal ganglion and identified neurons RPa2 are studied on the isolated nervous system of the snail. The neurons of the first group, which became rapidly habituated to the intracellular stimulation, are shown to manifest the ability to restore action potential generation in the presence of 5-HT. In contrast, the neurons possessing endogenous rhythmic activity (RPa2) in the presence of 5-HT generate burst activity against the background of the development of slow waves of the membrane potential. A comparative analysis of the effect of 5-HT and compounds with a known effect on Ca2+ and the calcium-dependent potassium channels (quinine, CoCl2 and CdCl2) points to the existence of various mechanisms providing for the serotoninergic regulation of the plasticity of the electroexcitable neuron membrane. This difference stems from the processes of activation and blockade of the Ca-dependent mechanisms.A. I. Karaev Institute of Physiology Azerbaizhan Academy of Sciences, Baku. Translated from Neirofiziologiya, Vol. 24, No. 3, pp. 286–290, May–June, 1992.  相似文献   

14.
It was found that applying 10–8 M oxytocin (OT) affects the functional properties of three types of cholinoreceptors under conditions of voltage clamping at the membrane of identified ganglia neurons inHelix pomatia. This neuropeptide depressed acetycholine-(ACh-)induced sodium-potassium-calcium current in neuron RB3 without altering reversal potential of ACh-induced current. Two (sub-) types of cholinoreceptors were distinguished on the basis of findings on OT effects on ACh-induced chloride currents; ACh-induced chloride current was reduced by the action of OT on the cholinoreceptors of one of these (neuron F4) and increased in the case of neurons D5 and F86. The effects of applying OT and serotonin were reversible but not cumulative. Injection of OT exerted an action on ACh-induced chloride current independent of that of OT application. Involvement of cyclic adenosine monophosphate in OT-induced bimodal modulation of functional properties of three types of cholinoreceptors was demonstrated.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziology, Vol. 22, No. 1, pp. 87–93, January–February, 1990.  相似文献   

15.
Possible role of cGMP is studied in control of extinction of snail neurones RPa4, RPa3 and LPa3 reactions to acetylcholine (ACh), applied rhythmically to neurone soma by means of microiontophoresis. It is shown that guanylate cyclase activators which raise the cGMP level in the cell--Na nitroprusside and Na azide (5,10(-4)-10(-3) mol/l)--intensify at extracellular application the extinction of inward transmembrane current and membrane depolarization in response to ACh. Suggestion is made about participation of cGMP-dependent phosphorylation of membrane proteins in control of the development rate, depth and duration of neurone cholinoreceptors short-term plasticity.  相似文献   

16.
Posttetanic potentiation (by orthodromic stimulation) of cholinosensitivity in LPa3 and RPa3 Helix lucorum neurons that are command in respect to withdrawal behavior was shown earlier (Pivovarov et al., 1999). Now we studied the regulatory role of the Na,K-pump and intracellular free Ga2+ in the posttetanic potentiation (PTP) of cholinosensitivity in command neurons. Semiintact Helix preparation "CNS-visceral bag" was used in experiments. Acetylcholine-induced inward currents were recorded using two-electrode voltage clamp technique. Acetylcholine was applied to somata of the identified LPa3 and RPa3 neurons with a 10-min interval before and after electrical tetanic stimulation of the n. intestinalis (10.5 mA; 0.1 s; 2/s; 2 min). Ouabain (extracellular application, 70 mcM) blocked the PTP. Intracellular injection of BAPTA (1 mM), chelator of Ca2+ ions, prevented the PTP. The PTP was absent after the ouabain application against the background of preliminary intracellular injection of BAPTA. A conclusion war drawn about Ca-dependent participation of Na,K-pump in posttetanic potentiation of cholinosensitivity in command Helix lucorum neurons of withdrawal behavior.  相似文献   

17.
Identification of cholinoreceptors (CR) of the soma of neurons RPa3 and LPa3 of the snail is performed using selective cholinomimetics and cholinolytics during the recording of transmembrane ionic currents. Agonists of the nicotinic (NCR) and muscarinic (MCR) types of cholinolytics evoked a brief activation of the receptors, with the exception of carbamylcholine, followed by an irreversible blocking. All selective cholinomimetics bonded with the same membrane centers which acetylcholine (AC) activated. The nicotinic and muscarinic cholinolytics decreased the amplitude of the input current elicited by AC; however, the use of scopolamine and platyphylline was without effect. It is speculated that the soma of neurons RPa3 and LPa3 exhibits NCR and MCR which have a number of pharmacological features distinguishing them from the corresponding CR of vertebrates. The MCR of these neurons must be classed as a special subtype differing from the well-known M1 and M2 subtypes.M. V. Lomonosov State University of Moscow. Translated from Neirofiziologiya, Vol. 24, No. 1, pp. 77–86, January–February, 1992.  相似文献   

18.
A negative shift of reversal potential at its extinction has been found with the current-voltage relation of acetylcholine-induced inward current in Helix lucorum's RPa3 and LPa3 neurons. An assumption has been made on a nonuniform extinction of acetylcholine-induced currents which is due to the motion of different ions. Ion flow with a more positive equilibrium potential decreases to a greater degree than reversal potential. It can be a current of Ca2+ and/or Na+ ions.  相似文献   

19.
Intracellular microelectrode recordings from neurons ofHelix pomatia revealed several local zones of action potential generation both on the soma and on some of the branches of the neurons. Under certain conditions the activity of individual loci of the neuron membrane was synchronized to produce a normal action potential. It is suggested that the somatic membrane of neurons is heterogeneous in structure and consists of separate loci of an electrically excitable membrane, incorporating active and latent pacemaker zones. Neurons ofH. pomatia are characterized by two types of action potential with different triggering mechanisms: one (synaptic) type is generated under the influence of the EPSP, the other (pacemaker) arises through activation of endogenous factors for the neuron (pacemaker potentials). The interaction between synaptic and pacemaker potentials during integrative activity of the neuron is discussed.M. V. Lomonosov Moscow State University. Translated from Neirofiziologiya, Vol. 5, No. 1, pp. 88–94, January–February, 1973.  相似文献   

20.
It was found that 10(-7)-10(-8) mol/l oxytocin (OT) or arginine-vasopressin (AVP) applications produced effects on functional properties of three types of acetylcholine (ACh) receptors on various neurons identified in the ganglia of Helix pomatia under voltage clamp conditions. OT and AVP depressed ACh-induced sodium-potassium-calcium current in neuron RBc3 without shift of reversal potential. Our data show that there are two types (subtypes) of ACh receptors which are connected with chloride current in neurons of Helix pomatia. OT decreased ACh-induced chloride current in neuron D4 and enhanced ACh-induced chloride current in neuron D5. These effects of OT were mimicked by the intracellular injection of cyclic AMP or application of isobutylmethylxanthine and an active cyclic AMP analog. AVP as a rule mimicked the effects of OT on functional properties of ACh receptors, but in neuron F8 effects of OT and AVP were independent. The present results suggest that cyclic AMP may be the second messenger mediating the OT- and AVP-induced modulations of functional properties of three types of ACh-receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号