首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stowe AE  Holt JS 《Plant physiology》1988,87(1):183-189
The relationship of triazine resistance to decreased plant productivity was investigated in Senecio vulgaris L. F1 reciprocal hybrids were developed from pure-breeding susceptible (S) and resistant (R) lines. The four biotypes (S, S × R, R, R × S) were compared in terms of atrazine response, electron transport, carbon fixation, and biomass production. Atrazine response, carbon fixation rate, and PSII and whole-chain electron transport rates of hybrids were nearly identical to those of their respective maternal parents. Significant differences occurred between the two susceptible (S, S × R) and two resistant (R, R × S) biotypes in atrazine response (I50), carbon fixation rate, and PSII and whole-chain electron transport rates; PSI rates were identical in all four biotypes. Coupled and uncoupled, whole-chain electron transport rates of thylakoids of the two susceptible biotypes were approximately 50% greater than those of the two resistant biotypes at photon flux densities greater than 215 micromoles per square meter per second. Carbon exchange rates of the two susceptible biotypes were 23% greater than those of the two resistant biotypes. Hybrid biotypes (S × R, R × S) were not identical to their maternal parents in biomass production. The S, S × R, and R × S plants all achieved greater biomass than R plants. These results suggest that while the resistance mutation influences thylakoid performance, reduced productivity of triazine-resistant plants cannot be ascribed solely to decreases in electron transport or carbon assimilation rates brought about by the altered binding protein. Since the F1 hybrids differed from their maternal parents only in nuclear genes, it appears that the detrimental effects of the triazine resistance mutation on plant growth may be attenuated by interactions of the plastid and nuclear genomes.  相似文献   

2.
The response of photosynthetic carbon assimilation and chlorophyll fluorescence quenching to changes in intercellular CO2 partial pressure (Ci), O2 partial pressure, and leaf temperature (15-35°C) in triazine-resistant and -susceptible biotypes of Brassica napus were examined to determine the effects of the changes in the resistant biotype on the overall process of photosynthesis in intact leaves. Three categories of photosynthetic regulation were observed. The first category of photosynthetic response, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco)-limited photosynthesis, was observed at 15, 25, and 35°C leaf temperatures with low Ci. When the carbon assimilation rate was Rubisco-limited, there was little difference between the resistant and susceptible biotypes, and Rubisco activity parameters were similar between the two biotypes. A second category, called feedback-limited photosynthesis, was evident at 15 and 25°C above 300 microbars Ci. The third category, photosynthetic electron transport-limited photosynthesis, was evident at 25 and 35°C at moderate to high CO2. At low temperature, when the response curves of carbon assimilation to Ci indicated little or no electron transport limitation, the carbon assimilation rate was similar in the resistant and susceptible biotypes. With increasing temperature, more electron transport-limited carbon assimilation was observed, and a greater difference between resistant and susceptible biotypes was observed. These observations reveal the increasing importance of photosynthetic electron transport in controlling the overall rate of photosynthesis in the resistant biotype as temperature increases. Photochemical quenching of chlorophyll fluorescence (qP) in the resistant biotype never exceeded 60%, and triazine resistance effects were more evident when the susceptible biotype had greater than 60% qP, but not when it had less than 60% qP.  相似文献   

3.
Excessive levels of bicarbonate adversely affect the growth and metabolism of plants. Broussonetia papyrifera (L.) Vent. and Morus alba L., belonging to family Moraceae, possess the favorable characteristics of rapid growth and adaptability to adverse environments. We examined the response of these two plant species to bicarbonate stress in terms of photosynthetic assimilation of inorganic carbon. They were exposed to 10 mM sodium bicarbonate in the culture solution for 20 days. The photosynthetic response was determined by measuring the net photosynthetic rate of the leaf, water-use efficiency, and chlorophyll fluorescence on days 10 and 20. The bicarbonate-use capacity of the plants was studied by measuring the carbonic anhydrase activity and the compositions of the stable carbon and hydrogen isotopes. The photosynthetic response to high concentration of bicarbonate varied with plant species and treatment durations. High concentrations of bicarbonate decreased the photosynthetic assimilation of inorganic carbon in the two plant species to half that in the control plants on day 10. Bicarbonate treatment did not cause any damage to the reaction centers of photosystem II in Morus alba; it, however, caused a decline in the quantum efficiency of photosystem II in B. papyrifera on day 20. Moreover, B. papyrifera had a greater bicarbonate-use capacity than M. alba because carbonic anhydrase converted bicarbonate to CO2 and H2O to a greater extent in B. papyrifera. This study showed that the effect of bicarbonate on photosynthetic carbon metabolism in plants was dual. Therefore, the concentration of bicarbonate in the soil should first be considered during afforestation and ecological restoration in karst areas.  相似文献   

4.
Isonuclear triazine-susceptible and triazine-resistant Senecio vulgaris L. biotypes were developed by making reciprocal crosses between susceptible and resistant biotypes to obtain F1 hybrids and backcrossing the hybrids to the appropriate pollen parent. The electrophoretic isozyme patterns of the enzyme aconitase obtained from leaf extracts of triazine-susceptible parental (S) and backcrossed (S×RBC6) biotypes, and triazine-resistant parental (R) and backcrossed (R×SBC6) biotypes verified that the biotypes had the expected nuclear genomes. Atrazine inhibition of chloroplast whole chain electron transport from water to methyl viologen was measured to verify susceptibility or resistance to triazine herbicides. The photosynthetic rate and biomass accumulation of greenhouse grown susceptible and resistant S. vulgaris biotypes were measured 28, 35, 42, 50, 57, and 64 days after planting to determine the effect of altered chloroplast function. S and S×RBC6 biotypes had CO2 assimilation rates of 16.2 and 16.6 micromoles CO2 per square meter per second, respectively, and I50 values (herbicide concentration producing 50% inhibition) of about 0.49 micromolar atrazine. The corresponding values for the R and R×SBC6 biotypes were 14.7 and 14.6 micromoles CO2 per square meter per second with I50 values of 65.0 micromolar atrazine. The S biotype was larger and more productive than the R biotype at all harvests. At the harvest 57 days after planting, mean shoot dry weight was 33.2 and 8.7 grams for the S and R biotypes, respectively. The growth effect associated with chloroplast differences was shown in comparisons of the S biotype with the R×SBC6 biotype and of the S×RBC6 biotype with the R biotype. The R×SBC6 biotype had 72% of the shoot dry weight of the S biotype while the R biotype had 55% of the shoot dry weight of the S×RBC6 biotype. The R×SBC6 and R biotypes produced about 73 and 62% of the leaf area of the S and S×RBC6 biotypes, respectively. Relative growth rate was similar in biotypes with the same nuclear genome; however, instantaneous unit leaf rate was higher in the S compared to the R×SBC6 biotype and in the S×RBC6 compared to the R biotype. At 57 days after planting, the cumulative leaf area duration (i.e. photosynthetic opportunity) of the R×SBC6 and R biotypes was 86 and 66% of that of the S and S×RBC6 biotypes, respectively. Our data indicate that impaired chloroplast function in triazine resistant S. vulgaris biotypes limits growth and productivity at the whole plant level.  相似文献   

5.
Animal ionotropic glutamate receptors (iGluRs) function as Ca2 + ion channels during excitatory neurotransmission in nerve cells. Here, a glutamate receptor-like gene (GLR) was identified and characterized from a plant — Echinochloa crus-galli. The GLR gene was designated EcGLR1 with GenBank no: JX518597. It has a 2793 bp open reading frame predicted to encode a 101.7 kDa protein. Sequence alignment showed that EcGLR1 is a GLR homologue. Its expression in response to quinclorac treatment was assessed by real-time PCR in near-isogenic lines of quinclorac-resistant (R) and susceptible (S) biotypes of E. crus-galli. The expression of EcGLR1 in the seedling leaf and root at least increased 5 times in the S plants and 22 times in the R plants after exposure to quinclorac. In the adult plant leaves, roots and stems, its expression increased 11–14 times in the S plants and 23–25 times in the R plants after quinclorac stimulation. In the seed, its expression was 4 times less in the S plants than that in the R plants, but after treatment, the levels all increased by about 24 times in the two biotypes. EcGLR1 expression was 1–4 times greater in the R plants than in that in the S plants, and after treatment by quinclorac, the difference increased to a ratio of 4 to 9. Its expression was higher in all tissues tested of R biotypes than in that of S plants before or after quinclorac treatment. The results of this study provide basic information for the further research of function of the EcGLR1 in resistance to quinclorac in E. crus-galli.  相似文献   

6.
The relationship between leaf photosynthetic rate (A) in a vegetation canopy and the net ecosystem CO2 exchange (NEE) over an entire ecosystem is not well understood. The aim of the present study is to assess the coordinated changes in NEE derived with eddy covariance, A measured in leaf cuvette, and their associations in a rainfed maize field. The light response-curves were estimated for the carbon assimilation rate at both the leaf and ecosystem scales. NEE and A synchronically changed throughout the day and were greater around noon and persisted longer during rapid growth periods. The leaf A had a similar pattern of daytime changes in the top, middle, and bottom leaves. Only severe leaf ageing led to a significant decline in the maximum efficiency of photosystem II (PSII) photochemistry. The greater maximum NEE was associated with a higher ecosystem quantum yield. NEE was positively and significantly correlated with the leaf A averaged based on the vertical distribution of leaf area. The finding highlights the feasibility of assessing NEE by leaf CO2 exchange because of most of experimental data obtained with leaf cuvette methods; and also implies that simultaneously enhancing leaf photosynthetic rate, electron transport rate, net carbon assimilation at whole ecosystem might play a critical role for the enhancement of crop productivity.  相似文献   

7.
The reciprocal relationship between diurnal changes in organic acid and storage carbohydrate was examined in the leaves of three Crassulacean acid metabolism plants. It was found that depletion of leaf hexoses at night was sufficient to account quantitatively for increase in malate in Ananas comosus but not in Sedum telephium or Kalanchoë daigremontiana. Fructose and to a lesser extent glucose underwent the largest changes. Glucose levels in S. telephium leaves oscillated diurnally but were not reciprocally related to malate fluctuations.

Analysis of isolated protoplasts and vacuoles from leaves of A. comosus and S. telephium revealed that vacuoles contain a large percentage (>50%) of the protoplast glucose, fructose and malate, citrate, isocitrate, ascorbate and succinate. Sucrose, a major constituent of intact leaves, was not detectable or was at extremely low levels in protoplasts and vacuoles from both plants.

In isolated vacuoles from both A. comosus and S. telephium, hexose levels decreased at night at the same time malate increased. Only in A. comosus, however, could hexose metabolism account for a significant amount of the nocturnal increase in malate. We conclude that, in A. comosus, soluble sugars are part of the daily maintenance carbon cycle and that the vacuole plays a dynamic role in the diurnal carbon assimilation cycle of this Crassulacean acid metabolism plant.

  相似文献   

8.

Background

The cotton-melon aphid, Aphis gossypii Glover (Hemiptera: Aphididae), is a polyphagous species with a worldwide distribution and a variety of biotypes. North China is a traditional agricultural area with abundant winter and summer hosts of A. gossypii. While the life cycles of A. gossypii on different plants have been well studied, those of the biotypes of North China are still unclear.

Results

Host transfer experiments showed that A. gossypii from North China has two host-specialized biotypes: cotton and cucumber. Based on complete mitochondrial sequences, we identified a molecular marker with five single-nucleotide polymorphisms to distinguish the biotypes. Using this marker, a large-scale study of biotypes on primary winter and summer hosts was conducted. All A. gossypii collected from three primary hosts—hibiscus, pomegranate, and Chinese prickly ash—were cotton biotypes, with more cotton-melon aphids found on hibiscus than the other two species. In May, alate cotton and cucumber biotypes coexisted on cotton and cucumber seedlings, but each preferred its natal host. Both biotypes existed on zucchini, although the cucumber biotype was more numerous. Aphids on muskmelon were all cucumber biotypes, whereas most aphids on kidney bean were cotton biotypes. Aphids on seedlings of potato and cowpea belong to other species. In August, aphids on cotton and cucumber were the respective biotypes, with zucchini still hosting both biotypes as before. Thus, the biotypes had different fitnesses on different host plants.

Conclusions

Two host-specialized biotypes (cotton and cucumber) are present in North China. Hibiscus, pomegranate, and Chinese prickly ash can serve as winter hosts for the cotton biotype but not the cucumber biotype in North China. The fitnesses of the two host-specialized biotypes differ on various summer hosts. When alate aphids migrate to summer hosts, they cannot accurately land on the corresponding plant.  相似文献   

9.
Black pigmented leaves are common among horticultural cultivars, yet are extremely rare across natural plant populations. We hypothesised that black pigmentation would disadvantage a plant by reducing photosynthesis and therefore shoot productivity, but that this trait might also confer protective benefits by shielding chloroplasts against photo-oxidative stress. CO2 assimilation, chlorophyll a fluorescence, shoot biomass, and pigment concentrations were compared for near isogenic green- and black-leafed Ophiopogon planiscapus ‘Nigrescens’. The black leaves had lower maximum CO2 assimilation rates, higher light saturation points and higher quantum efficiencies of photosystem II (PSII) than green leaves. Under saturating light, PSII photochemistry was inactivated less and recovered more completely in the black leaves. In full sunlight, green plants branched more abundantly and accumulated shoot biomass quicker than the black plants; in the shade, productivities of the two morphs were comparable. The data indicate a light-screening, photoprotective role of foliar anthocyanins. However, limitations to photosynthetic carbon assimilation are relatively small, insufficient to explain the natural scarcity of black-leafed plants.  相似文献   

10.
Abstract. The effect of growth temperature on biomass production and photosynthesis of nearly-isonuclear triazine-resistant and -susceptible Senecio vulgaris L. bio-types was investigated. Plants were grown in growth chambers with day/night temperatures of 13/8, 20/15 and 30/25°C, and were harvested 35, 42, 49 and 56d after planting (DAP). The S biotype produced more shoot dry weight than the R × SBC6 biotype, and the S × RBC6 biotype produced more shoot dry weight than the R biotype at all DAP and growth temperature combinations. The S and S × RBC6 biotypes had greater photosynthetic rates than the R X SBC6 and R biotypes, respectively. Thus, plants containing the susceptible chloroplast genome produced more biomass and had greater photosynthetic rates than those with the resistant chloroplast genome, when in association with the same nuclear genome. There was no differential temperature effect on biomass production of isonuclear plants possessing resistant or susceptible chloroplast genomes. However, there was a large differential temperature effect on the amount of biomass produced by plants containing different nuclear genomes (R or S) in association with the same chloroplast genome. The R nuclear genome appeared to be better adapted to cooler growth temperatures while the S nuclear genome was better adapted to warmer growth conditions.  相似文献   

11.
Heat and drought stresses are often coincident and constitute major factors limiting global crop yields. A better understanding of plant responses to the combination of these stresses under production environments will facilitate efforts to improve yield and water use efficiencies in a climatically changing world. To evaluate photosynthetic performance under dry-hot conditions, four cotton (Gossypium barbadense L.) cultivars, Monseratt Sea Island (MS), Pima 32 (P32), Pima S-6 (S6) and Pima S-7 (S7), were studied under well-watered (WW) and water-limited (WL) conditions at a field site in central Arizona. Differences in canopy temperature and leaf relative water content under WL conditions indicated that, of the four cultivars, MS was the most drought-sensitive and S6 the most drought-tolerant. Net CO2 assimilation rates (A) and stomatal conductances (gs) decreased and leaf temperatures increased in WL compared to WW plants of all cultivars, but MS exhibited the greatest changes. The response of A to the intercellular CO2 concentration (ACi) showed that, along with stomatal closure, non-stomatal factors associated with heat stress also limited A under WL conditions, especially in MS. The activation state of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) decreased in WL compared to WW plants, consistent with thermal inhibition of Rubisco activase activity. The extent of Rubisco deactivation could account for the metabolic limitation to photosynthesis in MS. Taken together, these data reveal the complex relationship between water availability and heat stress for field-grown cotton plants in a semi-arid environment. Both diffusive (drought-stress-induced) and biochemical (heat-stress-induced) limitations contributed to decreased photosynthetic performance under dry-hot conditions.  相似文献   

12.
Improving photosynthesis is considered a major and feasible option to dramatically increase crop yield potential. Increased atmospheric CO2 concentration often stimulates both photosynthesis and crop yield, but decreases protein content in the main C3 cereal crops. This decreased protein content in crops constrains the benefits of elevated CO2 on crop yield and affects their nutritional value for humans. To support studies of photosynthetic nitrogen assimilation and its complex interaction with photosynthetic carbon metabolism for crop improvement, we developed a dynamic systems model of plant primary metabolism, which includes the Calvin–Benson cycle, the photorespiration pathway, starch synthesis, glycolysis–gluconeogenesis, the tricarboxylic acid cycle, and chloroplastic nitrogen assimilation. This model successfully captures responses of net photosynthetic CO2 uptake rate (A), respiration rate, and nitrogen assimilation rate to different irradiance and CO2 levels. We then used this model to predict inhibition of nitrogen assimilation under elevated CO2. The potential mechanisms underlying inhibited nitrogen assimilation under elevated CO2 were further explored with this model. Simulations suggest that enhancing the supply of α-ketoglutarate is a potential strategy to maintain high rates of nitrogen assimilation under elevated CO2. This model can be used as a heuristic tool to support research on interactions between photosynthesis, respiration, and nitrogen assimilation. It also provides a basic framework to support the design and engineering of C3 plant primary metabolism for enhanced photosynthetic efficiency and nitrogen assimilation in the coming high-CO2 world.

Simulations with a dynamic systems model of C3 primary metabolism show that the decreased supply of reducing equivalent and 2-oxoglutaric acid cause decreased nitrogen assimilation under elevated CO2.  相似文献   

13.
Photosynthetic gas exchange, plant-water relations characteristics, and stable carbon isotope discrimination (Δ) were evaluated for five Coffea arabica L. genotypes growing under two soil moisture regimes in the field. The Δ of leaf tissue was strongly correlated (r = −0.95) with inherent water use efficiency (ratio of assimilation to stomatal conductance; A/g). The variation in inherent water use efficiency (WUE) among genotypes was 30% for plants irrigated weekly. The higher WUE exhibited by some of these plants resulted from reduced g rather than increased photosynthetic capacity at a given g. Withholding irrigation for 1 month caused Δ to decline substantially in expanding leaf tissue of all genotypes. A strong correlation (r = 0.92) was found between Δ and plant hydraulic efficiency estimated as the ratio of g to the diurnal range in leaf water potential (Ψl). The Δ values for plants irrigated weekly adequately predicted drought-induced changes in Δ (r = 0.99) and midday Ψl (r = 0.95). The results indicated that Δ might be used to evaluate several aspects of plant performance and response to specific environmental conditions, once suitable background physiological data have been gathered.  相似文献   

14.
Young Carapa guianensis plants were examined under well-watered (control) and water-deficit conditions with the aim to evaluate possible relationship between diurnal changes in leaflet gas exchange with lipid peroxidation and adjustments in antioxidative responses. Treatment comparisons were assessed when leaflet water potential (Ψw) in water-stressed plants reached around ?2.5 ± 0.5 MPa at pre-dawn. Regardless of watering regime, the highest net CO2 assimilation rate and stomatal conductance were recorded until 9:00 h. Control plants showed diurnal increases in transpiration, while it was strongly decreased in water-stressed plants. Diurnal decreases in intercellular to ambient CO2 concentration ratio were just observed in stressed plants. Regardless of watering regime, non-significant changes (P > 0.05) in Ψw and relative water content were registered throughout the day; however, both variables were significantly lower (P < 0.05) in stressed plants. Malondialdehyde concentration did not vary throughout the day, but it was higher in stressed plants. Excepting for guaiacol-type peroxidase, the antioxidant enzyme activities varied throughout the day regardless of watering regimes. Nevertheless, increases in antioxidant enzymes were more expressive in water-stressed plants. Despite, a relationship between diurnal changes in A and g s and lipid peroxidation or antioxidant enzymes was unclear regardless of watering regimes. Thus, we conclude that although plants from both watering regimes were able to adjust antioxidant enzymes activities throughout the day, the water-stressed plants were more susceptible to damages to net CO2 assimilation and suffered more expressive oxidative damages to lipids than plants grown under well-watered conditions.  相似文献   

15.
We examined factors that limit diurnal and seasonal photosynthesis in Leymus cinereus, a robust tussock grass from shrub-steppes of western North America. Data from plants in a natural stand and in experimental field plots indicate that this bunchgrass has 1) a high photosynthetic capacity, 2) high leaf nitrogen content and high nitrogen-use efficiency, 3) a steep leaf-to-air diffusion gradient for carbon dioxide, which enhances intrinsic water-use efficiency, and 4) photosynthetic tissues that tolerate severe water stress and recover quickly from moderate water stress. Midday depressions of CO2 assimilation (A) and stomatal conductance were slight in plants with plentiful water, but marked in plants subject to moderate water stress. Midday stomatal closure in moderately stressed plants reduced intercellular carbon dioxide concentration (ci) by ≈40 μl liter-1. The maximum rate of A achieved during the day for severely stressed plants (predawn water potential = -4 MPa) was one-third and daily carbon gain per unit leaf area was about one-fourth that of well-watered plants. For plants in the natural stand, CO2-saturated photosynthesis declined almost linearly with decreasing soil water availability over the growing season, whereas there was little effect on A at CO2 ambient levels or on carboxylation efficiency until predawn water potentials reached -1.8 MPa. Nitrogen-use efficiency declined with diminishing soil moisture, but there was no seasonal change in stomatal limitation or instantaneous water-use efficiency as estimated from A vs. ci curves at optimal leaf temperature and moderate atmospheric evaporative demand. Thus, reduced stomatal conductance in response to increased evaporative demand may increase stomatal limitation diumally, but over the growing season, stomatal limitation estimated from A vs. ci curves is relatively constant because maximum stomatal conductance is closely tuned to the CO2 assimilatory capacity of the mesophyll.  相似文献   

16.
Low intensity (0.015 millimole per square meter per second) blue light applied to leaves of Hedera helix under a high intensity red light background (0.50 millimole per square meter per second red light) induced a specific stomatal opening response, with rapid kinetics comparable to those previously reported for stomata with `grass type' morphology. The response of stomatal conductance to blue light showed a transient `overshoot' behavior at high vapor pressure difference (2.25 ± 0.15 kiloPascals), but not at low vapor pressure difference (VPD) (0.90 ± 0.10 kilo-Pascal). The blue light-induced conductance increase was accompanied by an increase in net photosynthetic carbon assimilation, mediated by an increase in the intercellular concentration of carbon dioxide. Values of assimilation once the blue light-stimulated conductance increase reached steady state were less than those at the peak of the overshoot, but the ratios of assimilation to transpiration (A/E) and blue light-stimulated ΔAE were greater during the steady-state response than during the overshoot. These results indicate that significant stomatal limitation of assimilation can occur, but that this limitation may improve water use efficiency under high VPD conditions. Under high intensity red light, the decline in A/E associated with an increase in VPD was minimized when conductance was stimulated by additional low intensity blue light. This effect indicates that the blue light response of stomata may be important in H. helix for the optimization of water use efficiency under natural conditions of high irradiance and VPD.  相似文献   

17.
Ran Liu  Ellen Cieraad  Yan Li 《Plant and Soil》2013,373(1-2):799-811

Background and aims

The response of plants and soil to rain pulses determines seasonal variations in the exchange of materials and energy at the ecosystem scale in arid and semi-arid regions. We assessed how the ecosystem carbon exchange (NEE) of desert halophyte communities of different plant functional-types responds to summer precipitation pulses in Tamarix and Haloxylon communities.

Methods

Plant water status, photosynthetic gas exchange, soil respiration and net ecosystem carbon exchange were measured to test the hypothesis that high physiological sensitivity may induce a greater changes in NEE resulting from the summer precipitation pulses in Haloxylon community.

Results

Plant water status and photosynthetic assimilation did not differ before and after summer precipitation pulses in either community. In contrast, soil respiration and NEE responded strongly to summer precipitation events in both communities. At the ecosystem level, precipitation pulses induced a pulse of CO2 release, rather than absorption. The NEE response to summer precipitation was less in the deep-rooted Tamarix community, compared to the shallow-rooted Haloxylon community, which was even converted into a carbon source after summer precipitation inputs. As a result, the effect of summer precipitation inputs on soil respiration was more important than the plant (carbon assimilation) response in determining the ecosystem response to episodic precipitation pulses.  相似文献   

18.
We investigated the role of photosynthesis by reproductive organs in meeting the carbon costs of sexual reproduction in the snow-buttercup, Ranunculus adoneus. The exposed green carpels of snow-buttercup flowers have 1–2 stomata each. Net carbon assimilation rates of flowers are negative during bud expansion, but rise to zero at maturity, and become positive during early fruit growth. Experimental removal of separate whorls of flower parts demonstrated that the showy, nectary-housing petals account for most of the respiration cost of flower presentation. Conversely, photosynthesis by female organs contributes to a flower's carbon balance. Dipteran pollinators of R. adoneus are most active in sunny mid-morning to mid-afternoon intervals. At this time of day, rates of carpel photosynthesis (Amax) meet respiratory costs of pollinator attraction in fully expanded flowers. Achenes remain photosynthetically active until dispersal, and positive net carbon assimilation rates characterize infructescences throughout fruit maturation. Photosynthetic rates of achenes are positively correlated with infructescence growth rates. We tested the causal basis of this relationship by experimentally shading developing infructescences. Mature achenes from shaded infructescences were 16–18% smaller than those from unshaded controls. Leaf photosynthetic rates did not differ between plants bearing shaded and unshaded seed heads. Since female reproductive organs are only 8% more costly in terms of caloric investment than male ones and contribute to their own carbon balance, it is plausible that the energy cost of male function equals or exceeds that of female function in this hermaphroditic species.  相似文献   

19.
How plants develop adaptive strategies to efficiently use nutrients on infertile soils is an important topic in plant ecology. It has been suggested that, with decreasing phosphorus (P) availability, plants increase photosynthetic P‐use efficiency (PPUE) (i.e., the ratio of instantaneous photosynthetic carbon assimilation rate per unit foliar P). However, the mechanism to increase PPUE remains unclear. In this study, we tested whether high PPUE is explained by an optimized allocation of P in cells among P‐containing biochemical compounds (i.e., foliar P fractions). We investigated the relationships among mass‐based photosynthetic carbon assimilation rate (Amass), PPUE, total foliar P concentration, and foliar P fractions in 10 tree species in two tropical montane rain forests with differing soil P availability (five species on sedimentary soils and five species on P‐poorer ultrabasic serpentine soils) on Mount Kinabalu, Borneo. We chemically fractionated foliar P into the following four fractions: metabolic P, lipid P, nucleic acid P, and residual P. Amass was positively correlated with the concentrations of total foliar P and of metabolic P across 10 tree species. Mean Amass and mean concentrations of total foliar P and of each foliar P fraction were lower on the P‐poorer ultrabasic serpentine soils than on the sedimentary soils. There was a negative relationship between the proportion of metabolic P per total P and the proportion of lipid P per total P. PPUE was positively correlated with the ratio of metabolic P to lipid P. High PPUE is explained by the net effect of a relatively greater investment of P into P‐containing metabolites and a relatively lesser investment into phospholipids in addition to generally reduced concentrations of all P fractions. We conclude that plants optimize the allocation of P among foliar P fractions for maintaining their productivity and growth and for reducing demand for P as their adaptation to P‐poor soils.  相似文献   

20.
We investigated the carbon isotope ratios and the diurnal pattern of malate accumulation in leaves and aerial roots of eight species of Phalaenopsis grown in greenhouses. The leaves of all the species showed carbon isotope ratios and the diurnal patterns of malate content typical of CAM plants. However, the aerial roots exhibited a large variation in the diurnal pattern of malate content among species and even among plants within the same species, although carbon isotope ratios were always CAM-like values. Some aerial roots showed the typical diurnal pattern of CAM, but others maintained high or low malate contents during a day without fluctuation. In order to characterize more strictly the nature of the malate variation in the aerial roots, we further investigated a possible variation of the diurnal pattern of malate among different aerial roots within an individual for Phalaenopsis amabilis and P. cornu-cervi. The diurnal pattern of malate content was varied even among different aerial roots within the same plant. Thus the photosynthetic carbon metabolism in aerial roots of orchids is fairly complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号