首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Different non-specific immune parameters and their seasonal changes in brood Indian major carp Labeo rohita reared in two major freshwater aquaculture regions of India viz. West Bengal and Orissa were investigated. It was undertaken for 2 consecutive years and included three main seasons of a year such as summer (March-May), rainy (July-September) and winter (November-January). Total serum protein, albumin and globulin levels were not significantly different throughout the year (p>0.01). Serum lysozyme and myeloperoxidase activities were lower (7.26+/-0.87mg/ml and, 0.54+/-0.11 OD, respectively) in winter as compared to any other season of the year. The bacterial agglutination titer was higher (p<0.01) in the rainy season (8.70+/-1.70) compared to summer and winter seasons (3.40+/-0.60 and 4.00+/-0.89, respectively). Haemagglutination and haemolytic activities did not vary (p>0.01) throughout the year. In blood smears, lymphocyte percentage was higher (75-80%) as compared to those of neutrophil (10-15%) and monocytes (5-10%) but eosinophilic granulocytes were present only in few cases. The differential leucocyte count did not vary significantly (p>0.05) in any season. This study indicated that certain non-specific immune parameters of this species can be modulated at certain times of the year.  相似文献   

2.
Maternal dehydration consistent with mild water deprivation or moderate exercise results in maternal and fetal plasma hyperosmolality and increased plasma arginine vasopressin (AVP). Previous studies have demonstrated a reduction in fetal urine and lung fluid production in response to maternal dehydration or exogenous fetal AVP. As fetal urine and perhaps lung liquid combine to produce amniotic fluid, maternal dehydration may affect the amniotic fluid volume and/or composition. In the present study, six chronically-prepared pregnant ewes with singleton fetuses (128 +/- 1 day) were water deprived for 54 h to determine the effect on amniotic fluid. Maternal plasma osmolality (306.5 +/- 0.9 to 315.6 +/- 1.9 mOsm/kg) and AVP (1.9 +/- 0.2 to 22.2 +/- 3.2 pg/ml) significantly increased during dehydration. Similarly, fetal plasma osmolality (300.0 +/- 0.9 to 312.7 +/- 1.7 mOsm/kg) and AVP (1.4 +/- 0.1 to 10.4 +/- 2.4 pg/ml) increased in parallel to maternal values. Amniotic fluid osmolality (276.8 +/- 5.7 to 311.6 +/- 6.5 mOsm/kg) and sodium (139.8 +/- 4.8 to 154.0 +/- 5.4 mEq/l) and potassium (9.1 +/- 1.3 to 13.9 +/- 2.4 mEq/l) concentrations increased while a significant (35%) reduction in amniotic fluid volume occurred (871 +/- 106 to 520 +/- 107 ml). These results indicate that maternal dehydration may have marked effects on maternal-fetal-amniotic fluid dynamics, possibly contributing to the development of oligohydramnios.  相似文献   

3.
Primary cells of renal proximal tubule epithelium (S1 segment) of human kidney (HRPTE cells) up-regulate aquaporin-1 (AQP-1) expression in response to hyperosmolarity. NaCl and D(+)-raffinose increased (2-2.5 fold) AQP-1 expression when medium osmolarity was 400 and 500 mOsm/kg.H2O. Urea did not have this effect. Unlike our previous findings with mIMCD-3 cells, vasopressin (10(-8)M) did not affect AQP-1 expression in HRPTE cells in isosmolar or NaCl-enriched hyperosmolar conditions. Furthermore, HRPTE cells increased (3-4 fold) AQP-1 expression when exposed to hyperosmolar Reno-60 and Hypaque-76 (diatrizoates, ionic) contrast agents at 400 and 500 mOsm/kg.H2O. Isosmolar (290 mOsm/kg H2O) Visipaque (iodixanol, non-ionic) at 10% (v/v) concentrations also increased AQP-1 expression, and 25% v/v of Visipaque rendered morphological alterations of HRPTE cells and a 3-fold increase in AQP-1 expression after 24h exposure. Finally, semi-quantitative RT-PCR of HRPTE cells subjected to various isosmolar or hyperosmolar conditions demonstrated up-regulation of AQP-1 mRNA and protein levels. Our results suggest AQP-1 up-regulation in HRPTE cells exposed to environmental stresses such as hyperosmolarity and high doses of isosmolar contrast agents.  相似文献   

4.
The objective of this study was to examine the validity of multifrequency direct segmental bioelectrical impedance analysis (DSM-BIA) measures to detect changes in the hydration status of wrestlers after they underwent 3% acute dehydration and a 2-hour rehydration period. Fifty-six National Collegiate Athletic Association wrestlers: (mean ± SEM); age 19.5 ± 0.2 years, height 1.73 ± 0.01 m, and body mass (BM) 82.5 ± 2.3 kg were tested in euhydrated, dehydrated (-3.5%), and 2-hour rehydration conditions using DSM-BIA to detect the changes in hydration status. The hydration status was quantified by measuring the changes in plasma osmolality (P(osm)), urine osmolality (Uosm), urine specific gravity (U(sg)), BM, and weighted segmental impedance at frequencies of 5, 20, 50, 100, and 500 kHz. Weighted segmental impedance significantly increased after a 3.5% reduction in the body weight for all the 5 frequencies evaluated, but it did not return to baseline at 2-hour rehydration. P(osm) (303 ± 0.6 mOsm·L(-1)), Uosm (617 ± 47 mOsm·L(-1)), and U(sg) (1.017 ± 0.001) all significantly increased at postdehydration and returned to baseline at 2-hour rehydration. Estimations of extracellular water were significantly different throughout the trial, but there were no significant changes in the estimations of the total body water or intracellular water. The results of this study demonstrate the potential use of DSM-BIA as a field measure to assess the hydration status of wrestlers for the purpose of minimal weight certification before the competitive season. When employing DSM-BIA to assess the hydration status, the results indicated that the changes in weighted segmental impedance at the frequencies evaluated (5, 20, 50, 100, and 500 kHz) are sensitive to acute changes in dehydration but lag behind changes in the standard physiological (plasma and urinary) markers of hydration status after a 2-hour rehydration period.  相似文献   

5.
Tissue fluid osmolarity of flatworms kept with moist bark was 243+/-4 S.E.M. mOsm kg(-1). Tissue fluid osmolarity of those kept with water-saturated tissue paper was 205+/-5 S.E.M. mOsm kg(-1). Flatworms placed in water of 300 and 400 mOsm kg(-1) lost weight. Those placed in water of 0, 100 and 200 mOsm kg(-1) gained weight. This suggests that body tissue fluids were approximately 260 mOsm kg(-1). Tissue fluids were slightly hyperosmotic in external media of 200, 300 and 400 mOsm kg(-1), and strongly hyperosmotic at 0 and 100 mOsm kg(-1). The highest measured value of tissue osmolarity was 457 mOsm kg(-1) from a specimen in a medium of 400 mOsm kg(-1). The lowest value was 145 mOsm kg(-1) from a specimen in pure water. Transverse sections of flatworms from different media concentrations suggest that fluids are absorbed into or removed from all tissues.  相似文献   

6.
Semen was collected from six adult (3.5-7-year-old) Murrah buffalo bulls at weekly intervals for 1 year and evaluated for routine parameters, motion characteristics, reactivity in hypoosmotic solution, and acrosomal and other morphological abnormalities of the spermatozoa. The overall motility (MOT), straight line velocity (VSL), curvilinear velocity (VCL), linearity (LIN), lateral head displacement (ALH) and average path velocity (VAP) were 66.85+/-2.79%, 26.58+/-0.24 and 107.07+/-1.47 microm/s, 26.91+/-0.01%, 11.19+/-0.09 and 61.78+/-2.79 microm/s, respectively. Significant seasonal variation was observed in sperm kinematics and hypoosmotic swelling (HOS) reactivity. Except for LIN, the mean values of sperm dynamics were higher during summer and rainy season and significantly lower in winter season. Sperm kinematics showed significant (P<0.01) positive correlation (r=0.25-0.60) with plasmallemal integrity. Ejaculates with less than 50% HOS-reactive spermatozoa had significantly lowered MOT, VSL, VCL and VAP as compared to the ejaculates with >50% HOS-positive spermatozoa. No significant difference was observed in sperm kinematics among the ejaculates having 50-70% and >70% HOS-reactive spermatozoa. The trend of motion dynamics of the spermatozoa with respect to HOS reactivity was similar in all the three seasons (summer, rainy and winter). The results indicate that ejaculates having more than 50% of HOS-reactive sperm show a higher magnitude of sperm kinematics compared to ejaculates having less than 50% HOS-positive spermatozoa.  相似文献   

7.
Seasonal changes in protein and nitrogen metabolism have not previously been reported in any Antarctic suspension-feeding species that ceases feeding for extended periods in winter. To provide comparison with data reported on Nacella concinna, a species that continues to feed in winter, we have measured feeding activity; oxygen consumption; ammonia, urea, and fluorescamine-positive substance (FPS) excretion; O : N ratios; body wall protein synthesis; RNA to protein ratios; and RNA activity at three times during the year in an Antarctic suspension-feeding holothurian. Feeding activity ceased for 4 mo during winter, and oxygen consumption rates decreased from 8.79+/-0.43 micro mol h(-1) to 4.48+/-0.34 micro mol h(-1). Ammonia excretion also decreased during winter from 2,600+/-177 nmol N h(-1) to 974+/-70 nmol N h(-1), but urea excretion rates increased from 178+/-36 nmol N h(-1) to 281+/-110 nmol N h(-1), while FPS excretion rates remained unchanged throughout the year with a seasonal mean of 88+/-13 nmol N h(-1). Oxygen to nitrogen ratios ranged between 6 and 10, suggesting that proteins were used as the primary metabolic substrate. Body wall protein synthesis rates decreased from 0.35%+/-0.03% d(-1) in summer to 0.23% d(-1) in winter, while RNA to protein ratios decreased from 33.10+/-1.0 microg RNA mg(-1) protein in summer to 27.88+/-1.3 microg RNA mg(-1) protein in winter, and RNA activity was very low, ranging between 0.11+/-0.01 mg protein mg(-1) RNA d(-1) in summer and 0.06+/-0.01 mg protein mg(-1) RNA d(-1) in winter. Heterocucumis steineni shows a larger seasonal decrease in oxygen consumption and ammonia excretion between February (summer) and July (winter) than N. concinna, while the proportional decrease in protein synthesis rates is similar in both species.  相似文献   

8.
Washout of the solute concentration gradient in the renal medullary interstitium has been suggested to play a role in mediating the natriuretic response to atrial natriuretic peptide (ANP). The purpose of this study was to determine the effects of ANP 8-33 on sodium excretion in Brattleboro diabetes insipidus (DI) rats, in which medullary tonicity is known to be decreased as compared to Long-Evans (LE) control rats. Basal urine osmolality (Uosm) was significantly lower in DI rats as compared to LE rats (123 +/- 6 vs 673 +/- 38 mOsm/kg). Infusion of ANP 8-33 at a rate of 4 micrograms/kg/hr for 60 min resulted in a significantly greater increase in UnaV (delta 6.1 +/- 1.2 vs delta 2.9 +/- 0.7 microEq/min) and urine flow (delta 40 +/- 12 vs delta 8 +/- 7 microliter/min) in the LE rats than in the DI rats. The greater natriuresis occurred in the LE rats despite no significant change in Uosm. Fractional lithium reabsorption (an indicator of proximal sodium reabsorption) decreased similarly in both groups. Infusion of ANP had no effect on mean arterial pressure in LE and DI groups. In summary, infusion of ANP in the DI rat resulted in a significant natriuresis, albeit less than in LE rats. The natriuresis in the LE rats occurred despite no significant change in Uosm. These data suggest that mechanisms other than medullary washout are responsible for the natriuretic effects of ANP.  相似文献   

9.
Our previous studies have suggested a role for renomedullary interstitial cells (RMICs) and renal medullary hyaluronan (HA) in water homeostasis. In the present study, cultured rat RMICs were used to examine the relationship of osmolality and oxygen tension on the extracellular amount of HA in the culture and to the cellular immunoreactivity to CD44, a HA binding protein. Under isotonic (330 mOsm(.)kg(-1) H(2)O), normoxic (20% O(2)) conditions, supernatant from sub-confluent RMICs contained 120+/-37 pg 10(4) cells(-1) 24 h(-1) of HA. Under hyperosmotic conditions (630 mOsm kg(-1) H(2)O), HA in the supernatant was decreased by 42% and under hypoosmotic conditions (230 mOsm kg(-1) H(2)O) it was doubled. Under hypoxic, iso-osmolar conditions (5% and 1% O(2), 330 mOsm kg(-1) H(2)O) this HA content was decreased by 56 and 48%, respectively, compared with normoxic, iso-osmolal conditions. Expression of CD44 on sub-confluent cells increased with increasing osmolality, as shown by immunostaining and flow cytometric analysis. The increases in CD44 from 330 to 630, 930 and 1230 mOsm kg(-1) H(2)O amounted to 5, 142 and 212%, respectively. Low oxygen tension (5% O(2)) decreased the intensity of CD44 immunofluorescence by 31%. Cell viability was similar at all conditions studied. In summary, these data indicate that cultured RMICs produce HA and are immunoreactive to CD44. In the supernatant of RMICs, the HA content decreases under hyperosmotic, hypoxic conditions. Conversely, CD44 immunoreactivity increases under hyperosmotic conditions. These results may explain our previous in vivo findings of a decreased renal papillary HA content during anti-diuresis and an increased content during water diuresis. The results support the concept that RMICs play an important role in renal water handling.  相似文献   

10.
We investigated seasonal changes in hormonal and thermoregulatory responses. Eight volunteers were subjected to the experiment at four times of the year: around the vernal and autumnal equinoxes, and at the summer and winter solstices at latitude 35° N. Plasma antidiuretic hormone (ADH), angiotensin II (ANG II), aldosterone (ALD) and plasma renin activity (PRA) were analyzed before and after water immersion. Seasonal changes in thermoregulatory responses were assessed by measuring core temperature and sweat rate during immersion of the leg in hot water (at 42°C) for 30 min in a room maintained at 26°C. The concentration of plasma ADH and ALD before water immersion was significantly higher in summer than in other seasons. The concentrations of ANG II and PRA did not show seasonal variations. Changes in tympanic temperature during water immersion showed significant differences between seasons, and were higher in winter than in other seasons. The sweat rate was significantly higher in summer than in other seasons. In summary, ADH and ALD concentrations displayed a seasonal rhythm with marked elevation in summer; this may be a compensative mechanism to prevent dehydration from increased sweat loss during summer due to heat acclimatization.  相似文献   

11.
The estuarine crab Chasmagnathus granulatus (Crustacea, Decapoda, Brachyura) inhabits salt marshes along the South Atlantic coast from Rio de Janeiro (Brazil) to Patagonia (Argentina). In the present study, salinity tolerance (0-45‰; 16-1325 mOsm/kg H2O) and hemolymph osmotic and ionic (Na+, Cl, and K+) regulation in both female and male C. granulatus were analyzed in summer and winter. Results showed that both female and male C. granulatus are euryhaline. Mortality was only observed in extremely low salinity (0‰; 16 mOsm/kg H2O) for both sexes. For females, the LT50 at 0‰ salinity was similar in summer (20.1 h) and winter (17.4 h). Males were more tolerant to salinity than females in both seasons, and mortality was observed only in summer (LT50 = 50.9 h). Results from freshly collected crabs or long-term (16-day) osmotic and ionic regulation experiments in the laboratory showed that male C. granulatus is a better hyper-osmoregulator than female in summer and winter. However, a hypo-osmoregulatory ability was only observed in females experimentally subjected to salinity 40‰ (1176 ± 11 mOsm/kg H2O) in both seasons. In both sexes, hyper-osmotic regulation was achieved by hyper-regulating hemolymph Na+, Cl, and K+ concentration. In females, hypo-osmotic regulation was achieved by hypo-regulating hemolymph Na+ and Cl concentration. Long-term (16-day) osmotic and ionic regulations in different salinities were similar in males or females collected and tested in summer and winter. Despite this lack of a seasonal effect on hemolymph osmoregulatory and ionoregulatory patterns in males or females, a marked seasonal difference in the dynamics of these processes was observed for both sexes. In the first 2 days after hypo-osmotic shock (20‰→5‰; 636→185 mOsm/kg H2O), variations in female osmolality and ion (Na+ and Cl) concentration were larger and faster in winter than in summer, while in males the opposite was observed. Furthermore, a seasonal effect on the crab response to hyper-osmotic shock (20‰→40‰; 636→1176 mOsm/kg H2O) was only observed in males. A new osmolality and ion (Na+ and Cl) concentration steady state was faster achieved in winter than in summer. Regarding sexual differences, females showed a better capacity to hypo-regulate the hemolymph osmolality and Na+ concentration than males, even after a sudden increase in salinity (hyper-osmotic shock) in both seasons. On the other hand, males showed a better capacity to hyper-regulate the hemolymph osmolality and Na+ concentration than females, even after a sudden decrease in salinity (hypo-osmotic shock), especially in winter. Taken together, results reported in the present study suggest the need to consider both sex and collection season as important factors in future osmotic and ionic regulation studies in estuarine crabs.  相似文献   

12.
Altogether 218 frozen semen AI doses, prepared between 1980 and 1989 and also between 2003 and 2005 from 18 AI Thai swamp buffalo sires, were examined to determine whether seasonality affects post-thaw viability, as plasma membrane integrity (PMI, using SYBR-14/PI), plasma membrane stability (PMS, using Annexin-V/PI), or motility (Mot, using CASA). A thermoresistance test (38 degrees C for 60 min) was used to further analyze sperm survivability in vitro. All variables were compared over 3 seasons of the year (rainy: July-October; winter: November-February; and summer: March-June), with distinct ambient temperature and humidity. PMI (% of alive spermatozoa) was higher in winter (54.6%, P<0.001) than in the rainy (43.5%) or summer (46.7%) seasons. Outcomes of PMS (Annexin-V/PI assay) confirmed those of PMI, the highest PMS in spermatozoa processed in winter (55.7%, P<0.001). Spermatozoa depicting linear Mot post-thaw ranged from 48.2% to 48.8% across seasons (ns), proportions that decreased during incubation (33.5-37.9%), albeit without seasonal differences. The mean percentages of straight linear velocity (VSL), average path velocity (VAP), or curvilinear velocity (VCL) were higher (P<0.05-0.001) in the rainy season than in winter or summer, while average lateral head displacement (ALH) was higher (P<0.05) in summer, differences maintained after incubation. In conclusion, post-thaw PMS and PMI, assessed by flow cytometry, were significantly better in sperm samples processed during winter than in samples processed during the other seasons of the year, a seasonal difference not picked up by CASA, probably due to the larger number of spermatozoa assessed.  相似文献   

13.
In the alpine region at Finse, Norway, Phauloppia spp. (Acari, Oribatida) inhabit lichens on top of boulders. Adult mites are about 0.5 mm in length and have a mean weight of ca. 15 μg. Temperatures in the lichens may drop below -35 degrees C in winter and increase to 55 degrees C in the summer. Large seasonal variations were recorded in supercooling points and body fluid osmolality. Mean January values of SCPs and osmolality were -35.3 degrees C and 3756 mOsm, while July values were -9.4 degrees C and 940 mOsm, respectively. Thermal hysteresis proteins were present in both summer and winter acclimated mites. In mid-winter, some of the mites survived more than 49 days in a water vapor saturated atmosphere at -19 degrees C, and more than 42 days enclosed in ice at the same temperature.The mites showed high tolerance to desiccation. Specimens collected in October survived up to 23 days at 22 degrees C and 5% RH. The tolerance to desiccation was lower in specimens collected during the winter. Some mites survived the loss of up to 90% of their total water content and were reactivated when given access to water. Length measurements of individual Phauloppia sp. showed that both male and female mites are clearly divided in two size groups, suggesting that they belong to two closely related species or different populations.  相似文献   

14.
黄土区荒草地和裸地土壤水分的循环特征   总被引:26,自引:1,他引:26  
在人工、天然降雨条件下,研究了黄土高原地区荒草地和裸地土壤水分循环特征.结果表明,干旱年(天然降雨条件),荒草地和裸地剖面内土壤水分变异系数随土层深度的增加而降低,基于标准差和变异系数两个指标,采用聚类分析可以将土壤剖面水分垂直变化划分为4层.丰水年(人工降雨条件),由于持续降雨入渗和强烈的蒸发蒸腾作用,荒草地和裸地剖面内土壤水分变异系数随土层深度的增加呈现“降-升-降”的变化趋势,且表层土壤水分变异程度明显降低.与裸地相比,荒草地土壤水分循环深度和强度加剧,表现为活跃层、次活跃层深度和蒸散量增大.土壤水分的动态变化主要受降雨和蒸散过程的影响,尤其是浅层,而深层具有相对滞后性.土壤水分的动态变化具有明显的季节性,一般可划分为3个主要时期,如春季失墒期、夏秋增失交替期和冬季相对稳定期.干旱年,土壤水分收支负平衡,入渗雨量全为蒸发蒸腾所消耗;丰水年,土壤水分收支正平衡,但入渗雨量的大部分(>80%)为强烈蒸发蒸腾所消耗.  相似文献   

15.
We studied the seasonal variation on aerobic metabolism and the response of oxidative stress parameters in the digestive glands of the subpolar limpet Nacella (P.) magellanica. Sampling was carried out from July (winter) 2002 to July 2003 in Beagle Channel, Tierra del Fuego, Argentina. Whole animal respiration rates increased in early spring as the animals spawned and remained elevated throughout summer and fall (winter: 0.09+/-0.02 micromol O2 h-1 g-1; summer: 0.31+/-0.06 micromol O2 h-1 g-1). Oxidative stress was assessed at the hydrophilic level as the ascorbyl radical content/ascorbate content ratio (A./AH-). The A./AH- ratio showed minimum values in winter (3.7+/-0.2 10(-5)AU) and increased in summer (18+/-5 10(-5) AU). A similar pattern was observed for lipid radical content (122+/-29 pmol mg-1 fresh mass [FW] in winter and 314+/-45 pmol mg-1 FW in summer), iron content (0.99+/-0.07 and 2.7+/-0.6 nmol mg-1 FW in winter and summer, respectively) and catalase activity (2.9+/-0.2 and 7+/-1 U mg-1 FW in winter and summer, respectively). Since nitrogen derived radicals are thought to be critically involved in oxidative metabolism in cells, nitric oxide content was measured and a significant difference in the content of the Fe-MGD-NO adduct in digestive glands from winter and summer animals was observed. Together, the data indicate that both oxygen and nitrogen radical generation rates in N. (P.) magellanica are strongly dependent on season.  相似文献   

16.
Changes in the number of Na+-K+-ATPase alpha-subunits, Na+-K+-ATPase activity and glycogen content of the crucian carp (Carassius carassius) brain were examined to elucidate relative roles of energy demand and supply in adaptation to seasonal anoxia. Fish were collected monthly around the year from the wild for immediate laboratory assays. Equilibrium dissociation constant and Hill coefficient of [3H]ouabain binding to brain homogenates were 12.87+/-2.86 nM and -1.18+/-0.07 in June and 11.93+/-2.81 nM and -1.17+/-0.06 in February (P>0.05), respectively, suggesting little changes in Na+-K+-ATPase alpha-subunit composition of the brain between summer and winter. The number of [3H]ouabain binding sites and Na-K-ATPase activity varied seasonally (P<0.001) but did not show clear connection to seasonal changes in oxygen content of the fish habitat. Six weeks' exposure of fish to anoxia in the laboratory did not affect Na+-K+-ATPase activity (P>0.05) confirming the anoxia resistance of the carp brain Na pump. Although anoxia did not suppress the Na pump, direct Q10 effect on Na+-K+-ATPase at low temperatures resulted in 10 times lower catalytic activity in winter than in summer. Brain glycogen content showed clear seasonal cycling with the peak value of 203.7+/-16.1 microM/g in February and a 15 times lower minimum (12.9+/-1.2) in July. In winter glycogen stores are 15 times larger and ATP requirements of Na+-K+-ATPase at least 10 times less than in summer. Accordingly, brain glycogen stores are sufficient to fuel brain function for about 8 min in summer and 16 h in winter, meaning about 150-fold extension of brain anoxia tolerance by seasonal changes in energy supply-demand ratio.  相似文献   

17.
Eastern red spotted newts, as aquatic adults, are active year round. They are small and easy to handle, and thus lent themselves to a laboratory study of seasonal changes in preferred body temperature and biochemical acclimatization. We collected newts in summer (n=20), late fall (n=10) and winter (n=5). Ten each of the summer and late fall newts were subjected to an aquatic thermal gradient. Summer newts maintained higher cloacal temperatures than late fall newts (26.8+/-0.5 degrees C and 17.2+/-0.4 degrees C, respectively). In addition, the activity of three muscle metabolic enzymes (cytochrome c oxidase (CCO), citrate synthase (CS) and lactate dehydrogenase (LDH)) was studied in all newts collected. Newts compensated for lower late fall and winter temperatures by increasing the activity of CCO during those seasons over that in summer newts at all assay temperatures (8, 16 and 26 degrees C). The activity of CS was greater in winter over summer newts at 8 and 16 degrees C. No seasonal differences in LDH activity were demonstrated. These data in newts indicate that this amphibian modifies some muscle metabolic enzymes in relation to seasonal changes and can modify its behavioral in a way that correlates with those biochemical changes.  相似文献   

18.
Celatoblatta quinquemaculata is a freeze-tolerant alpine cockroach found on the Rock and Pillar Range, Central Otago, New Zealand. This study investigated seasonal changes in water content, as well as desiccation tolerance, and the relationship between desiccation and cold tolerance. Whole body water contents from field-fresh cockroaches collected over a 20 month period ranged from 69.9+/-1.0% fresh weight (FW) in February 1998 to 60.3+/-1.1% FW in July 1998. Water contents were significantly lower in winter than summer, and were positively correlated to microhabitat temperatures over the week preceding collection. Cockroaches survived the loss of up to 82% (mean: 56.7%+/-10.2) of their initial body water content, and the amount of water loss sustained was not dependent on the rate of water loss. Cockroaches did not suffer further mortality due to desiccation after removal to 99% relative humidity, but only regained lost water if given access to liquid water. Experimental dehydration did not enhance freeze-tolerance, but did slightly lower the supercooling point. It is concluded that reduction of body water content in winter may be a consequence of cold hardening responses, but desiccation does not constitute the cold hardening mechanism itself.  相似文献   

19.
We studied a patient with the rare syndrome of chronic hypernatremia associated with a frontal expansive process. The pituitary function was evaluated during dynamic tests bearing on radioimmunoassay of serum neurophysins levels. A test of water restrictionloading was performed during which urine appeared diluted (190-200 mOsm/kg) while the degree of serum osmolality was high (310-317 mOsm/kg). An hemodynamic stimulation resulted in a significant increase in serum neurophysins (from 3.5 +/- 0.3 to 5.5 +/- 0.2 ng/ml). After one intravenous injection of 2 mg nicotine, vomiting was observed, followed by a sharp rising of serum neurophysins levels (from 3.2 +/- 0.5 to 10.6 +/- 0.2 ng/ml). During hypertonic saline infusion, serum osmolality increased from 270 to 310 mOsm/kg, while neurophysins showed no significant change. Such results evidence a selective impairment of the hypothalamic-neurohypophyseal response to osmotic stimuli, with intact mechanisms of non-osmotic stimulation. In this patient, natremia was brought back to normal values by adequate water supply.  相似文献   

20.
Since previous studies from this laboratory have demonstrated that the redistribution of blood volume and concomitant relative central hypervolemia induced by water immersion to the neck causes a profound natriuresis and a suppression of the renin-aldosterone system, it was of interest to assess whether the diuresis induced by immersion was mediated by an analogous inhibition of ADH. The effects of water immersion on renal water handling and urinary ADH excretion were assessed in 10 normal male subjects studied following 14 h of overnight dehydration on two occasions, control and immersion. The conditions of seated posture and time of day were identical. During control ADH persisted at or above prestudy values. Immersion resulted in a progressive decrease in ADH excretion from 80.1 plus or minus 7 (SEM) to 37.3 plus or minus 6.3 muU/min (P smaller than 0.025). Cessation of immersion was associated with a marked increase in ADH from 37.3 +/- 6.3 muU/min to 176.6 +/- 72.6 muU/min during the recovery hour (P smaller than 0.05). Concomitant with these changes urine osmolality decreased significantly beginning as early as the initial hour of immersion from 1044 +/- 36 to 542 +/- 66 mosmol/kg H2O during the final hour of immersion (P smaller than 0.001). Recovery was associated with a significant mean increase in Uosm of 190 +/- 40 mosmol/kg H2O over the final hour of immersion (P smaller than 0.001). The suppression of ADH occurred without concomitant changes in plasma tonicity. These studies are consistent with the suggestion that in hydrated subjects undergoing immersion suppression of ADH release contributes to the enhanced free water clearance, which has been previously documented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号