共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Phosphoinositides are the phosphorylated derivatives of the structural membrane phospholipid phosphatidylinositol. Single or combined phosphorylation at the 3, 4 and 5 positions of the inositol ring gives rise to the seven different species of phosphoinositides. All are quantitatively minor components of cellular membranes but have been shown to have important functions in multiple cellular processes. Here we describe our current knowledge of phosphoinositide metabolism and functions in apicomplexan parasites, mainly focusing on Toxoplasma gondii and Plasmodium spp. Even though our understanding is still rudimentary, phosphoinositides have already shown their importance in parasite biology and revealed some very particular and parasite-specific functions. Not surprisingly, there is a strong potential for phosphoinositide synthesis to be exploited for future anti-parasitic drug development. 相似文献
3.
Evolution of gametocyte sex ratios in malaria and related apicomplexan (protozoan) parasites 总被引:5,自引:0,他引:5
'Survival of the fittest' is usually interpreted to mean that natural selection favours genes that maximize their transmission to the next generation. Here, we discuss recent applications of this principle to the study of gametocyte sex ratios in malaria and other apicomplexan parasites. Sex ratios matter because they are an important determinant of fitness and transmission success -- and hence of disease epidemiology and evolution. Moreover, inbreeding rates can be estimated from gametocyte sex ratios. The sex ratio is also an excellent model trait for testing the validity of important components of what is being marketed as 'Darwinian medicine'. 相似文献
4.
Most Apicomplexa are obligate intracellular parasites and many are important pathogens of human and domestic animals. For a successful cell invasion, they rely on their own motility and on a firm anchorage to their host cell, depending on the secretion of proteins and the establishment of a structure called the moving junction (MJ). The MJ moves from the apical to the posterior end of the parasite, leading to the internalization of the parasite into a parasitophorous vacuole. Based on recent data obtained in Plasmodium and Toxoplasma, an emerging model emphasizes a cooperative role of secreted parasitic proteins in building the MJ and driving this crucial invasive process. More precisely, the parasite exports the microneme protein AMA1 to its own surface and the rhoptry neck RON2 protein as a receptor inserted into the host cell together with other RON partners. Ongoing and future research will certainly help refining the model by characterizing the molecular organization within the MJ and its interactions with both host and parasite cytoskeleton for anchoring of the complex. 相似文献
5.
Martha S. Hunter 《Oecologia》1993,93(3):421-428
Autoparasitoid wasps lay fertilized eggs in homopteran nymphs, and these eggs develop into female primary parasitoids. Unfertilized, male-producing eggs are laid in immatures of the wasps' own or another primary parasitoid species; males then develop as secondary or hyperparasitoids. In the population of Encarsia pergandiella studied in Ithaca, NY, fertilized eggs were laid in the nymphs of the whitefly Trialeurodes packardi (primary hosts) and unfertilized eggs were laid almost exclusively in pupal females of their own species (secondary hosts). In the two years the population was studied, secondary hosts were always much less abundant than primary hosts at both sites. However, secondary hosts were parasitized at a significantly greater rate than primary hosts. In a laboratory experiment, the encounter rate of females with primary and secondary hosts was not significantly different. Moreover, there was no evidence from the field that wasps found leaves bearing secondary hosts more frequently than leaves without secondary hosts. Dissections of field-collected females showed them to be mated, and thus capable of laying both unfertilized and fertilized eggs. These results suggest that wasps did not encounter secondary hosts at a greater rate, nor were they constrained to lay unfertilized eggs, but rather secondary hosts were preferred. The oviposition sex ratios were influenced by the proportion of secondary hosts, but were less female-biased than would be predicted from the proportion of secondary hosts alone. The results do not support the predictions of Godray and Waage (1990) for either strictly host-limited autoparasitoids (sex ratio should reflect the proportion of secondary hosts) or for egg-limited autoparasitoids (sex ratio should be equal, and independent of the proportion of secondary hosts). 相似文献
6.
7.
Aspartyl proteinases are a widely distributed family of enzymes. All vertebrate aspartyl proteinases share a conserved nine-exon gene structure, but in other organisms the structure of aspartyl proteinase genes varies considerably. The exon-intron patterns generally reflect phylogeny based on amino acid sequences. However, close comparison of these gene structures reveals some striking features, such as the conservation of intron positions and intron phases between aspartyl proteinases from nematodes and apicomplexans. Here, we discuss the implications of gene structure for the possible evolution of the aspartyl proteinase family, with particular reference to the plasmepsins of Plasmodium falciparum and eimepsin from Eimeria tenella. 相似文献
8.
Silvia Haase Dennis Zimmermann Maya A. Olshina Mark Wilkinson Fabio Fisher Yan Hong Tan Rebecca J. Stewart Christopher J. Tonkin Wilson Wong David R. Kovar Jake Baum 《Molecular biology of the cell》2015,26(17):3001-3012
Proteins of the actin-depolymerizing factor (ADF)/cofilin family have been shown to be crucial for the motility and survival of apicomplexan parasites. However, the mechanisms by which ADF proteins fulfill their function remain poorly understood. In this study, we investigate the comparative activities of ADF proteins from Toxoplasma gondii and Plasmodium falciparum, the human malaria parasite, using a conditional T. gondii ADF-knockout line complemented with ADF variants from either species. We show that P. falciparum ADF1 can fully restore native TgADF activity, demonstrating functional conservation between parasites. Strikingly, mutation of a key basic residue (Lys-72), previously implicated in disassembly in PfADF1, had no detectable phenotypic effect on parasite growth, motility, or development. In contrast, organelle segregation was severely impaired when complementing with a TgADF mutant lacking the corresponding residue (Lys-68). Biochemical analyses of each ADF protein confirmed the reduced ability of lysine mutants to mediate actin depolymerization via filament disassembly although not severing, in contrast to previous reports. These data suggest that actin filament disassembly is essential for apicomplexan parasite development but not for motility, as well as pointing to genus-specific coevolution between ADF proteins and their native actin. 相似文献
9.
Apicomplexan parasites possess a highly specialized secretory apparatus. The timed secretion of proteins from three different organelles--micronemes, rhoptries and dense granules--serves to establish and maintain a parasitophorous vacuole inside the host cell in which the parasites can divide. Recent efforts have identified components that sort apicomplexan proteins to these unusual secretory organelles and have shown that this machinery is evolutionarily conserved across species. Concise amino acid sequences (e.g. tyrosine-based motifs) within the targeted protein determine their destination in Apicomplexa in a way similar to mammalian cells. Additionally, the parasite exploits new or unusual mechanisms of protein targeting (e.g. post-secretory membrane insertion). 相似文献
10.
11.
Members of the phylum Apicomplexa are important protozoan parasites that cause some of the most serious, and in some cases, deadly diseases in humans and animals. They include species from the genus Plasmodium, Toxoplasma, Eimeria, Neospora, Cryptosporidium, Babesia and Theileria. The medical, veterinary and economic impact of these pathogens on a global scale is enormous. Although chemo- and immuno-prophylactic strategies are available to control some of these parasites, they are inadequate. Currently, there is an urgent need to design new vaccines or chemotherapeutics for apicomplexan diseases. High-throughput global protein expression analyses using gel or non-gel based protein separation technologies coupled with mass spectrometry and bioinformatics provide a means to identify new drug and vaccine targets in these pathogens. Protein identification based proteomic projects in apicomplexan parasites is currently underway, with the most significant progress made in the malaria parasite, Plasmodium falciparum. More recently, preliminary two-dimensional gel electrophoresis maps of Toxoplasma gondii and Neospora caninum tachyzoites and Eimeria tenella sporozoites, have been produced, as well as for micronemes in E. tenella. In this review, the status of proteomics in the analysis of global protein expression in apicomplexan parasites will be compared and the challenges associated with these investigations discussed. 相似文献
12.
Sex allocation theory predicts that: (1) resources allocated to androecium should decrease with an increase in selfing, (2) a decrease in androecium biomass should be accompanied by an increase in the biomass of pistils, and (3) a decrease in androecium biomass should be coupled with a decrease in flower size, specifically corolla biomass. Another predicted change in reproductive traits associated with variation in selfing concerns seed to ovule ratios, but does not directly stem from sex allocation theory. It has been postulated that seed to ovule ratios should be positively correlated with the amount of selfing. These predictions were tested for six accessions of pigeonpea,Cajanus cajan L., that differed in selfing rates. The results were remarkably in accordance with the predictions. We conclude that sex allocation theory provides a powerful tool to understand the evolution of many reproductive traits in plants. 相似文献
13.
14.
15.
16.
Roberto Meyer-Fernandes J 《Parasitology international》2002,51(3):299-303
The plasma membrane of cells contains enzymes whose active sites face the external medium rather than the cytoplasm. The activities of these enzymes, referred to as ecto-enzymes, can be measured using living cells. Cell membrane ecto-ATPases are integral membrane glycoproteins that are millimolar divalent cation-dependent, low specificity enzymes that hydrolyze all nucleoside triphosphates. Their physiological role is still unknown. However, several hypotheses have been suggested such as; (i). protection from cytolytic effects of extracellular ATP, (ii). regulation of ectokinase substrate concentration, (iii). termination of purinergic signaling, (iv). involvement in signal transduction, and (v). involvement in cellular adhesion. In this review, the biochemical properties and possible functions of the ecto-ATPases of different protozoa are summarized. 相似文献
17.
The intracellular forms of the apicomplexan parasites Plasmodium, Toxoplasma and Eimeria reside within a parasitophorous vacuole. The nutrients required by these intracellular parasites to support their high rate of growth and replication originate from the host cell which, in turn, takes up such compounds from the extracellular milieu. Solutes moving from the external medium to the interior of the parasite, are confronted by a series of three membranes --the host cell membrane, the parasitophorous vacuole membrane and the parasite plasma membrane. Each constitutes a potential permeability barrier which must be either crossed or bypassed. It is the mechanisms by which this occurs that are the subject of this review. 相似文献
18.
Christen M Klinger R Ellen Nisbet Dinkorma T Ouologuem David S Roos Joel B Dacks 《Current opinion in microbiology》2013,16(4):424-431
- Download : Download high-res image (188KB)
- Download : Download full-size image
19.
Syed Bilal Ahmad Andrabi Michiru Tahara Ryuma Matsubara Tomoko Toyama Hiroka Aonuma Hitoshi Sakakibara Makoto Suematsu Kazuyuki Tanabe Tomoyoshi Nozaki Kisaburo Nagamune 《Parasitology international》2018,67(1):47-58
Cytokinins are plant hormones that are involved in regulation of cell proliferation, cell cycle progression, and cell and plastid development. Here, we show that the apicomplexan parasites Toxoplasma gondii and Plasmodium berghei, an opportunistic human pathogen and a rodent malaria agent, respectively, produce cytokinins via a biosynthetic pathway similar to that in plants. Cytokinins regulate the growth and cell cycle progression of T. gondii by mediating expression of the cyclin gene TgCYC4. A natural form of cytokinin, trans-zeatin (t-zeatin), upregulated expression of this cyclin, while a synthetic cytokinin, thidiazuron, downregulated its expression. Immunofluorescence microscopy and quantitative PCR analysis showed that t-zeatin increased the genome-copy number of apicoplast, which are non-photosynthetic plastid, in the parasite, while thidiazuron led to their disappearance. Thidiazuron inhibited growth of T. gondii and Plasmodium falciparum, a human malaria parasite, suggesting that thidiazuron has therapeutic potential as an inhibitor of apicomplexan parasites. 相似文献
20.
Brunet J 《Trends in ecology & evolution》1992,7(3):79-84
Hermaphroditic plants allocate their reproductive resources to different functions: male, female and pollinator attraction. While earlier sex-allocation models considered only male and female functions, more recent ones can divide reproductive resources into multiple functions. The basic predictions derived from these models are similar. While most models predict sex allocation at the fruit stage (pollen and seeds), some have examined allocation at the flower stage (pollen and ovules). Selfing rate, mode of pollination and competition among offspring of the same parent are some of the factors that can influence sex allocation among populations. Although the empirical evidence lags behind the theoretical development, sex-allocation theory has been quite successful at predicting trends among populations. 相似文献