首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
用管式光生物反应器培养螺旋藻的研究   总被引:9,自引:0,他引:9  
微藻大规模培养主要有敞开式大池培养和封闭式光生物反应器培养两种主要方式。管式光生物反应器是封闭式光生物反应器的主要类型之一。与其它类型相比,管式光生物反应器放大较易,成本较低。国外关于管式光生物反应器已有不少研究[1~3]但关于管式光生物反应器产率与光强和光暗比的关系等方面的研究尚未得出明确的结论。国内管式光生物反应器的研究较少[4],尚未见有关管式光生物反应器中微藻悬浮液流变特性基础参数和产率影响因素的报道。螺旋藻是丝状体蓝藻,螺旋藻蛋白质含量高,其蛋白质所含必需氨基酸丰富,是国内外大规模商业…  相似文献   

2.
微藻的闪光效应可以大幅提高微藻的光效率,提高微藻产量。通过在传统的板式光生物反应器中加入斜挡板以增强微藻的闪光效应。以小球藻为模型藻种,考察了新型板式光生物反应器内不同光强和不同进口流速对小球藻生长速率和光效率的影响。结果表明,当进口流速为0.16 m/s时,随着光强的提高,小球藻的细胞浓度逐渐增加,光效率逐渐降低;在500μmol/(m2·s)的光强条件下,小球藻细胞浓度和光效率均随着进口流速的提高而增加。新型板式光生物反应器内小球藻的细胞浓度比传统板式光生物反应器提高了39.23%,表明在传统板式光生物反应器内加入斜挡板可有效增强微藻的闪光效应。  相似文献   

3.
微藻具有固定CO2和净化有机废水的能力,在环保、食品饲(饵)料、医药和生物能源开发等领域备受关注,但规模化培养及其产业化仍是研究的难点,亟待解决。就常用于大规模培养微藻的光生物反应器的特点和结构进行了综述。其中,封闭式微藻光生物反应器能够较好地调控藻种的培养条件、不易遭受污染,藻种的纯度容易控制,但培养规模小,生产成本较高;而开放式微藻光生物反应器无法精确控制藻种生长环境,但生产规模大、产量高、生产成本低,因此应用广泛。最佳的方法是综合两者优点,即首先利用封闭式微藻光生物反应器进行中试放大,大量繁殖藻种,然后投入开放式微藻光生物反应器内进行大规模商业生产,此方法有望成为微藻光生物反应器的发展方向,以期为微藻大规模培养提供参考借鉴。  相似文献   

4.
国内简讯     
适宜藻类细胞工程培养的大型封闭式管道光生物反应器研制成功中国科学院海洋研究所生物技术中心成功研制出适宜藻类细胞工程培养的大型封闭式管道光生物反应器,解决了限制微藻资源开发利用产业化的瓶颈。  相似文献   

5.
微藻养殖的本质是光能转化,而光线的接收和传递受反应器形状和排布方式的影响非常大.实验室中的微藻养殖反应器主要有两种,锥形瓶和柱型广口瓶,前者的光程比后者短得多.室外微藻养殖实例较少,开放池和光生物反应器的大小、形状和排布方式差异大,光程的计算和比较更复杂.为了便于比较和推算不同类型反应器的光合作用参数和生物质产率,本文分别讨论了圆柱形反应器(玻璃反应瓶、平行管式和立柱式反应器)和长方形反应器(开放池和板式反应器)的容积、表面积及占地面积生物质产率的计算方法,并给出了不同产率的换算关系.本文还介绍了光程(LP)、藻液受光率(S/V)和藻液占地率( V/L)等表征反应器光合效率的参数.  相似文献   

6.
光照对光生物反应器中微藻高密度光自养培养的影响   总被引:2,自引:0,他引:2  
光生物反应器是实现微藻高密度培养的重要装置,其设计的关键技术之一是选择合适的光照方式。根据国内外近十年来的相关研究成果,重点介绍了入射光性质(光源、光强、光质和光暗循环)和光能分布对微藻生长的影响,评述了用于微藻高密度培养的光照技术,展望了进一步的研究方向,为高效光生物反应器的设计和优化提供参考。  相似文献   

7.
微藻培养过程的光特性研究进展   总被引:1,自引:0,他引:1  
微藻培养过程中光的吸收、衰减以及光暗循环等特性是影响微藻的生长速度及其产量的重要因素。本文分析了微藻的光吸收过程、光在微藻培养液中的衰减特性以及微藻培养过程中的光暗循环特性,重点综述了国内外各类光生物反应器中光特性的研究进展,并对其发展方向进行了展望,为微藻培养光生物反应器的设计提供参考依据。  相似文献   

8.
微藻养殖中的新型光生物反应器系统   总被引:3,自引:0,他引:3  
目前世界上微藻的大规模养殖仍普遍采用开放池式生产系统,该系统具有许多不足之处;开发高效、易于控制的新型生产系统是今后开展的趋势。本文对一些新型光生物反应器系统如优化的浅水道工生产系统、密闭管道式、发酵罐式光生物反应器、高密度藻类光生物反应器以及其它类型的光生物反应器进行了较为详细的介绍。  相似文献   

9.
分析了微藻培养系统内光传递过程的数学模型和光分布影响因素,重点综述了光暗循环对微藻生长影响的实验研究和CFD技术应用研究进展,展望了微藻培养系统内光现象的发展方向,以期为规模化、高效微藻培养光生物反应器的设计、优化和放大提供参考。  相似文献   

10.
微藻生物柴油研发态势分析   总被引:3,自引:0,他引:3  
微藻是光合效率最高的原始植物之一,与农作物相比,单位面积的产率可高出数十倍。微藻生物柴油技术首先包括微藻的筛选和培育,获得性状优良的高含油量藻种,然后在光生物反应器中吸收阳光、CO2等,生成微藻生物质,最后经过采收、加工,转化为微藻生物柴油。完整的微藻生物柴油成套技术链涵盖多个技术环节,是一个复杂的系统工程,包括微藻生物工程技术、微藻高效规模化养殖技术,以及微藻生物质采收、加工与转化技术等。其中,降低生产成本是当前微藻生物柴油研究面临的主要挑战,各国的研究机构为此开展了多方面的研究。  相似文献   

11.
Microalgal mass culture systems and methods: Their limitation and potential   总被引:15,自引:0,他引:15  
Cultivation of microalgae using natural and man-made open-ponds istechnologically simple, but not necessary cheap due to the high downstream processing cost. Products of microalgae cultured in open-pondscould only be marketed as value-added health food supplements, specialityfeed and reagents for research. The need to achieve higher productivityand to maintain monoculture of algae led to the development of enclosedtubular and flat plate photobioreactors. Despite higher biomassconcentration and better control of culture parameters, data accumulatedin the past 25 years have shown that the illuminated areal, volumetricproductivity and cost of production in these enclosed photobioreactors arenot better than those achievable in open-pond cultures. The technicaldifficulty in sterilizing these photobioreactors has hindered their applicationfor the production of high value pharmaceutical products. The alternativeof cultivating microalgae in heterotrophic mode in sterilizable fermentorshas achieved some commercial success. The maximum specific growth ratesof heterotrophic algal cultures are in general slower than those measured inphotosynthetic cultures. The biomass productivity of heterotrophic algalcultures has yet to achieve a level that is comparable to industrialproduction of yeast and other heterotrophic microrganisms. Mixotrophiccultivation of microalage takes advantage of their ability to utilise organicenergy and carbon substrates and perform photosynthesis concurrently. Moreover, production of some algal metabolites is light regulated. Futuredesign of sterilizable bioreactors for mixotrophic cultivation of microalgaemay have to consider the organic substrate the main source of energy andlight the supplemental source of energy, a change in mindset.  相似文献   

12.
Engineering analyses combined with experimental observations in horizontal tubular photobioreactors and vertical bubble columns are used to demonstrate the potential of pneumatically mixed vertical devices for large-scale outdoor culture of photosynthetic microorganisms. Whereas the horizontal tubular systems have been extensively investigated, their scalability is limited. Horizontal tubular photobioreactors and vertical bubble column type units differ substantially in many ways, particularly with respect to the surface–to–volume ratio, the amount of gas in dispersion, the gas–liquid mass transfer characteristics, the nature of the fluid movement and the internal irradiance levels. As illustrated for eicosapentaenoic acid production from the microalga Phaeodactylum tricornutum, a realistic commercial process cannot rely on horizontal tubular photobioreactor technology. In bubble columns, presence of gas bubbles generally enhances internal irradiance when the Sun is low on the horizon. Near solar noon, the bubbles diminish the internal column irradiance relative to the ungassed state. The optimal dimensions of vertical column photobioreactors are about 0.2 m diameter and 4 m column height. Parallel east–west oriented rows of such columns located at 36.8°N latitude need an optimal inter-row spacing of about 3.5 m. In vertical columns the biomass productivity varies substantially during the year: the peak productivity during summer may be several times greater than in the winter. This seasonal variation occurs also in horizontal tubular units, but is much less pronounced. Under identical conditions, the volumetric biomass productivity in a bubble column is 60% of that in a 0.06 m diameter horizontal tubular loop, but there is substantial scope for raising this value.  相似文献   

13.
The feasibility of growth, calcium carbonate and lipid production of the coccolithophorid algae (Prymnesiophyceae), Pleurochrysis carterae, Emiliania huxleyi, and Gephyrocapsa oceanica, was investigated in plate, carboy, airlift, and tubular photobioreactors. The plate photobioreactor was the most promising closed cultivation system. All species could be grown in the carboy photobioreactor. However, P. carterae was the only species which grew in an airlift photobioreactor. Despite several attempts to grow these coccolithophorid species in the tubular photobioreactor (Biocoil), including modification of the airlift and sparger design, no net growth could be achieved. The shear produced by turbulence and bubble effects are the most likely reasons for this failure to grow in the Biocoil. The highest total dry weight, lipid and calcium carbonate productivities achieved by P. carterae in the plate photobioreactors were 0.54, 0.12, and 0.06 g L−1 day−1 respectively. Irrespective of the type of photobioreactor, the productivities were P. carterae > E. huxleyi > G. oceanica. Pleurochrysis carterae lipid (20–25% of dry weight) and calcium carbonate (11–12% of dry weight) contents were also the highest of all species tested. Biotechnol. Bioeng. 2011;108:2078–2087. © 2011 Wiley Periodicals, Inc.  相似文献   

14.
The present paper makes a comparative analysis of the outdoor culture of H. pluvialis in a tubular photobioreactor and a bubble column. Both reactors had the same volume and were operated in the same way, thus allowing the influence of the reactor design to be analyzed. Due to the large changes in cell morphology and biochemical composition of H. pluvialis during outdoor culture, a new, faster methodology has been developed for their evaluation. Characterisation of the cultures is carried out on a macroscopic scale using a colorimetric method that allows the simultaneous determination of biomass concentration, and the chlorophyll, carotenoid and astaxanthin content of the biomass. On the microscopic scale, a method was developed based on the computer analysis of digital microscopic images. This method allows the quantification of cell population, average cell size and population homogeneity. The accuracy of the methods was verified during the operation of outdoor photobioreactors on a pilot plant scale. Data from the reactors showed tubular reactors to be more suitable for the production of H. pluvialis biomass and/or astaxanthin, due to their higher light availability. In the tubular photobioreactor biomass concentrations of 7.0 g/L (d.wt.) were reached after 16 days, with an overall biomass productivity of 0.41 g/L day. In the bubble column photobioreactor, on the other hand, the maximum biomass concentration reached was 1.4 g/L, with an overall biomass productivity of 0.06 g/L day. The maximum daily biomass productivity, 0.55 g/L day, was reached in the tubular photobioreactor for an average irradiance inside the culture of 130 microE/m2s. In addition, the carotenoid content of biomass from tubular photobioreactor increased up to 2.0%d.wt., whereas that of the biomass from the bubble column remained roughly constant at values of 0.5%d.wt. It should be noted that in the tubular photobioreactor under conditions of nitrate saturation, there was an accumulation of carotenoids due to the high irradiance in this reactor, their content in the biomass increasing from 0.5 to 1.0%d.wt. However, carotenoid accumulation mainly took place when nitrate concentration in the medium was below 5.0mM, conditions which were only observed in the tubular photobioreactor. A similar behaviour was observed for astaxanthin, with maximum values of 1.1 and 0.2%d.wt. measured in the tubular and bubble column photobioreactors, respectively. From these data astaxanthin productivities of 4.4 and 0.12 mg/L day were calculated for the tubular and the bubble column photobioreactors. Accumulation of carotenoids was also accompanied by an increase in cell size from 20 to 35 microm, which was only observed in the tubular photobioreactors. Thus it may be concluded that the methodology developed in the present study allows the monitoring of H. pluvialis cultures characterized by fast variations of cell morphology and biochemical composition, especially in outdoor conditions, and that tubular photobioreactors are preferable to bubble columns for the production of biomass and/or astaxanthin.  相似文献   

15.
The technology of microalgal culturing   总被引:5,自引:0,他引:5  
This review outlines the current status and recent developments in the technology of microalgal culturing in enclosed photobioreactors. Light distribution and mixing are the primary variables that affect productivities of photoautotrophic cultures and have strong impacts on photobioreactor designs. Process monitoring and control, physiological engineering, and heterotrophic microalgae are additional aspects of microalgal culturing, which have gained considerable attention in recent years.  相似文献   

16.
Worldwide, microalgal biofuel production is being investigated. It is strongly debated which type of production technology is the most adequate. Microalgal biomass production costs were calculated for 3 different micro algal production systems operating at commercial scale today: open ponds, horizontal tubular photobioreactors and flat panel photobioreactors. For the 3 systems, resulting biomass production costs including dewatering, were 4.95, 4.15 and 5.96 € per kg, respectively. The important cost factors are irradiation conditions, mixing, photosynthetic efficiency of systems, medium- and carbon dioxide costs. Optimizing production with respect to these factors, a price of € 0.68 per kg resulted. At this cost level microalgae become a promising feedstock for biodiesel and bulk chemicals.

Summary

Photobioreactors may become attractive for microalgal biofuel production.  相似文献   

17.
The need to develop new concepts in reactor design and the growing interest inSpirulina prompted our group to abandon open ponds in the seventies and to focus interest mainly on closed systems. Two substantially different closed photobioreactors have been developed and are at present under investigation in our Research Centre: the tubular photobioreactor (made of rigid or collapsible tubes) and the recently devised vertical alveolar panel (VAP) made of 1.6-cm-thick Plexiglas alveolar sheets.The technical characteristics of the two systems are described and discussed in relation to the main factors which regulate the growth of oxygenic photosynthetic microorganisms in closed reactors.This paper was presented at the Symposium on Applied Phycology at the Fourth International Phycological Congress, Duke University.  相似文献   

18.
Bioprocess and Biosystems Engineering - In this study, a one-dimensional transient model was developed to analyze the temperature variation of tubular photobioreactors operated outdoors and the...  相似文献   

19.
As photosynthetic efficiencies are relatively high at irradiation levels of <500 micromol m(-2) s(-1), photosynthetic productivity could be increased by redistributing strong light over a larger photo-receiving area using conical, helical, tubular photobioreactors (HTP). When Chlorella were exposed to light irradiation of 980 micromol m(-2) s(-1), the ratio of productivities was 1.00:1.13:1.23:1.66 for conical HTPs with cone angles of 180 degrees (flat type), 120 degrees, 90 degrees, and 60 degrees, respectively. This suggests that photo-redistribution technology is a highly effective and convenient approach for increasing the photosynthetic productivity of microalgae.  相似文献   

20.
In this paper we study the outdoor production of Tisochrysis lutea in pilot-scale tubular photobioreactors (3.0 m3). Experiments were performed modifying the dilution rate and evaluating biomass productivity and quality, in addition to the overall performance of the system. Results confirm that T. lutea can be produced outdoors on a commercial scale in continuous mode, obtaining productivities of up to 20 g m?2 day?1 of biomass, which are rich in proteins (45 % d.wt.) and lipids (25 % d.wt.). The utilization of this type of photobioreactor allows one to control the levels of contamination and pH within the cultures, but daily variations in solar radiation impose elevated dissolved oxygen concentrations and insufficient temperature conditions on the cells inside the reactor. Excessive dissolved oxygen reduces biomass productivity to 68 % of that which is maximal, whereas inadequate temperature reduces it to 63 % of maximum. Thus, by optimally controlling these parameters, biomass productivity can be almost doubled. These results confirm the potential for producing this valuable strain on a commercial scale in optimally designed/operated tubular photobioreactors as a viable biotechnological industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号