首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Genomics》2023,115(5):110684
This study aims to elucidate the effect of ARHGAP9 on lung adenocarcinoma (LUAD) metastasis, and preliminarily explore its molecular mechanism. As a result, we found that ARHGAP9 was downregulated and correlated with poor prognosis of LUAD. ARHGAP9 knockdown promoted LUAD cell proliferation, migration and invasion, inhibited cell apoptosis and reduced G0G1 cell cycle arrest, in contrast to the results of ARHGAP9 overexpression. Further RNA sequencing analysis demonstrated that ARHGAP9 knockdown in H1299 cells significantly reduced DKK2 (dickkopf related protein 2) expression. Silencing ARHGAP9 in H1299 cells while overexpressing DKK2, DKK2 reversed the promoted effects of ARHGAP9 knockdown on LUAD cell proliferation, migration and invasion. Meanwhile, the activity of Wnt/β-catenin signaling pathway was also reduced. Taken together, these data indicated that ARHGAP9 knockdown promoted LUAD metastasis by activating Wnt/β-catenin signaling pathway via suppressing DKK2. This may provide a new strategy for LUAD treatment.  相似文献   

2.
Colorectal neoplasia differentially expressed (CRNDE) is a significantly upregulated long noncoding RNA in hepatocellular carcinoma (HCC). CRNDE could promote cell proliferation, migration, and invasion, while its molecular mechanisms were still largely unclear. In this study, we investigated the expression and function of CRNDE. CRNDE was significantly upregulated in tumor tissues compared with adjacent normal tissues. In vitro, we revealed that knockdown of CRNDE inhibited cell proliferation, migration, and cell invasion capacities in HCC. Animal studies indicated that CRNDE knockdown represses both growth and metastasis of HCC tumors in vivo. Moreover, knockdown of CRNDE suppressed the cell epithelial-mesenchymal transition (EMT) process by increasing the expression of E-cadherin and ZO-1, whereas, decreasing the expression of N-cadherin, slug, twist, and vimentin in HCC cells. We also revealed that knockdown of CRNDE suppressed the Wnt/β-catenin signaling in HCC. Thus, CRNDE could modulate EMT of HCC cells and knockdown of CRNDE impaired the mesenchymal properties. CRNDE increased invasion of HCC cells might be through activating the Wnt/β-catenin signaling pathway.  相似文献   

3.
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Systemic chemotherapy plays an important role in the treatment of patients with advanced liver cancer. However, chemoresistance to cisplatin is a major limitation of cisplatin-based chemotherapy in the clinic, and the underlying mechanism of such resistance is not fully understood. In this study, we found that nuclear accumulation of β-catenin was higher in cisplatin-resistant Huh7 cells than in Huh7 cells, indicating that Wnt signaling was activated in cisplatin-resistant cells. Wnt signaling inhibition increased cisplatin-induced growth inhibition in hepatoma cell. We further demonstrated that sorafenib could inhibit Wnt signaling in Huh7 cells and cisplatin-resistant Huh7 cells. Co-treatment with cisplatin and sorafenib was more effective in inhibiting cancer cell proliferation than cisplatin alone in vitro and in vivo, whereas Wnt3a (Wnt activator) treatment abrogated sorafenib-induced growth inhibition. These data demonstrated that sorafenib sensitizes human HCC cell to cisplatin via suppression of Wnt/β-catenin signaling, thus offering a new target for chemotherapy of HCC.  相似文献   

4.
5.
MicroRNAs (miRNAs) are strongly implicated in many cancers, including breast cancer. Recently, microRNA-301a (miR-301a) has been proved to play a substantial role in gastric cancer, but its functions in the context of breast cancer remain unknown. Here we report that miR-301a was markedly upregulated in primary tumor samples from patients with distant metastases and pro-metastatic breast cancer cell lines. Gain-of-function and loss-of-function studies showed that ectopic overexpression of miR-301a promoted breast cancer cell migration, invasion and metastasis both in vitro and in vivo. Notably, Wnt/β-catenin signaling was hyperactivated in metastatic breast cancer cells that express miR-301a, and mediated miR-301a-induced invasion and metastasis. Furthermore, miR-301a directly targeted and suppressed PTEN, one negative regulator of the Wnt/β-catenin signaling cascade. These results demonstrate that miR-301a maintains constitutively activated Wnt/β-catenin signaling by directly targeting PTEN, which promotes breast cancer invasion and metastasis. Taken together, our findings reveal a new regulatory mechanism of miR-301a and suggest that miR-301a might be a potential target in breast cancer therapy.  相似文献   

6.
TRIM29 plays an important role in many neoplasms.In this study,we aimed to elucidate its role in hepatocellular carcinoma (HCC) and explore the corresponding potential mechanism.The expression level of TRIM29 in HCC samples and hepatoma cell lines was detected.We found that TRIM29 was down-regulated in clinical HCC samples and cultured hepatoma cell lines by western blot analysis and quantitative polymerase chain reaction.In addition,we demonstrated that higher TRIM29 expression was associated with higher differentiation grade of HCC.To explore the effect of TRIM29 on hepatoma cells and its possible mechanisms,TRIM29-knockdown and overexpression cell models were constructed.The results showed that the depletion of TRIM29 promoted liver cancer cell proliferation,clone formation,migration and invasion in vitro probably through the Wnt/β-catenin signaling pathway.This study revealed the inhibitory roles of TRIM29 in HCC and the possible mechanisms.  相似文献   

7.
BackgroundCelecoxib (CXB), a selective COX-2 inhibitor NSAID, has exhibited prominent anti-proliferative potential against numerous cancers. However, its low bioavailability and long term exposure related cardiovascular side effects, limit its clinical application. In order to overcome these limitations, natural bioactive compounds with lower toxicity profile are used in combination with therapeutic drugs. Therfore, in this study Piperine (PIP), a natural chemo-preventive agent possessing drug bioavailability enhancing properties, was considered to be used in combination with low doses of CXB.PurposeWe hypothesized that the combination of PIP with CXB will have a synergistic anti-proliferative effect on colon cancer cells.Study designThe potency of PIP and CXB alone and in combination was evaluated in HT-29 human colon adenocarcinoma cells and mechanism of growth inhibition was investigated by analyzing the players in apoptotic and Wnt/β-catenin signaling pathways.MethodsThe effect of PIP on the oral bioavailability of CXB in mice was investigated using HPLC analysis. The study investigated the synergistic anti-proliferative effect of CXB and PIP on HT-29 cells and IEC-6 non-tumorigenic rat intestinal epithelial cells by SRB cell viability assay. Further, the cellular and molecular mechanism(s) involved in the anti-proliferative combinatorial effect was extensively explored in HT-29 cells by flow cytometry and western blotting. The in vivo efficacy of this combination was studied in CT26.WT tumor syngeneic Balb/c mice model.ResultsPIP as a bioenhancer increased the oral bioavailability of CXB (129%). The IC50 of CXB and PIP were evaluated to select doses for combination treatment of HT-29 cells. The drug combinations having combination index (CI) less than 1 were screened using CompuSyn software. These combinations were significantly cytotoxic to HT-29 cells but IEC-6 were least effected. Further, the mechanism behind CXB and PIP mediated cell death was explored. The co-treatment led to reactive oxygen species generation, mitochondrial dysfunction, caspase activation and enhanced apoptosis in HT-29 cells. Additionally, the combination treatment synergistically modulated Wnt/β-catenin pathway, downregulated the stemness markers and boosted therapeutic response in CT26 syngeneic Balb/c mice.ConclusionThe outcomes of the study suggests that combining CXB and PIP offers a novel approach for the treatment of colon cancer.  相似文献   

8.
Nucleoredoxin (NRX) is a member of the thioredoxin family of proteins that controls redox homeostasis in cell. Redox homeostasis is a well-known regulator of cell differentiation into various tissue types. We found that NRX expression levels were higher in white adipose tissue of obese ob/ob mice and increased in the early adipogenic stage of 3T3-L1 preadipocyte differentiation. Knockdown of NRX decreased differentiation of 3T3-L1 cells, whereas overexpression increased differentiation. Adipose tissue-specific NRX transgenic mice showed increases in adipocyte size as well as number compared with WT mice. We further confirmed that the Wingless/int-1 class (Wnt)/β-catenin pathway was also involved in NRX-promoted adipogenesis, consistent with a previous report showing NRX regulation of this pathway. Genes involved in lipid metabolism were downregulated, whereas inflammatory genes, including those encoding macrophage markers, were significantly upregulated, likely contributing to the obesity in Adipo-NRX mice. Our results therefore suggest that NRX acts as a novel proadipogenic factor and controls obesity in vivo.  相似文献   

9.
10.
11.
12.
Clevers H  Nusse R 《Cell》2012,149(6):1192-1205
The WNT signal transduction cascade controls myriad biological phenomena throughout development and adult life of all animals. In parallel, aberrant Wnt signaling underlies a wide range of pathologies in humans. In this Review, we provide an update of the core Wnt/β-catenin signaling pathway, discuss how its various components contribute to disease, and pose outstanding questions to be addressed in the future.  相似文献   

13.
Previous studies have revealed that miR-186 is involved in the pathogenesis of many malignancies. However, the role of miR-186 in hepatocellular carcinoma (HCC) carcinogenesis and its detailed mechanism are poorly understood. This study was to investigate the function of miR-186 in modulating HCC cell proliferation, cell cycle, migration, and invasion. We found that miR-186 was decreased in HCC tissues and cell lines. Loss-of-function experiments showed that reduction of miR-186 dramatically enhanced tumor cell proliferation and metastasis. Besides, miR-186 also participated in the modulation of the cell cycle. In addition, luciferase reporter assays and Western blot analysis showed that MCRS1 was a novel target of miR-186 in HCC cells. Notably, upregulation of miR-186 suppressed the nuclear β-catenin accumulation and blocked the activation of Wnt/β-catenin signaling in HCC cells. Forced MCRS1 expression abrogated the inhibitory effect of miR-186 on cell growth, metastasis and Wnt/β-catenin signaling in HCC cells. Our findings may provide new insight into the pathogenesis of HCC and miR-186/ MCRS1 might function as new therapeutic targets for HCC.  相似文献   

14.
Circular RNA (circRNA) is involved in a wide range of life processes including tumorigenesis. However, the molecular mechanisms of circRNA in endometrial carcinoma (EC) carcinogenesis remain unclear. In the present study, we aimed to investigate the potential modulation of hsa_circ_0002577 on EC progression. Here, we showed that hsa_circ_0002577 expression was significantly upregulated in EC tissues, and high hsa_circ_0002577 expression was associated with advanced FIGO stage, lymph node metastasis, and poor overall survival rate of EC patients. In function assays, we demonstrated that hsa_circ_0002577 knockdown significantly reduced EC cells proliferation, migration, invasion ability in vitro and decreased tumor growth in vivo. In mechanism study, we revealed that hsa_circ_0002577 might act as a sponge for miR-197, and CTNND1 was revealed to be a target gene of miR-197. In addition, we revealed that the oncogenic effects of hsa_circ_0002577 were attributed to the regulation of miR-197/CTNND1/Wnt/β-catenin axis. Taken together, we indicated that hsa_circ_0002577 could play critical functions by hsa_circ_0002577/miR-197/CTNND1/Wnt/β-catenin signaling pathway, which served as a novel therapeutic application for EC treatment.  相似文献   

15.
BackgroundMetastasis is a critical step in tumor development; however, its specific molecular mechanism is still not fully understood. SETDB1 overexpression is associated with tumor progression and poor prognosis. Here, we explored a novel mechanism by which SETDB1 promotes tumor metastasis in colorectal cancer.MethodsWe conducted database and clinical specimen analysis to determine the expression level of SETDB1 in colorectal cancer, as well as the prognosis of colorectal cancer with overexpressed SETDB1. We used wound healing assays, Transwell assays, and animal studies to study the effect of SETDB1 on colorectal cancer. We performed western blotting, qRT–PCR, immunofluorescence, and co-immunoprecipitation to explore the underlying associations between SETDB1 and β-catenin. We further used wound healing assays, Transwell assays, and animal studies to verify the relationship between SETDB1 and Wnt/β-catenin.ResultsSETDB1 expression was upregulated in colorectal cancer and correlated with poor prognosis. Low expression of SETDB1 decreased invasion and metastasis in colorectal cancer. Low-expression of SETDB1 in colorectal tumor cells decreased β-catenin expression and its nuclear import. We also found that SETDB1 can bind and directly methylate β-catenin, Lastly, we discovered that this metastatic ability could be decreased by activating the Wnt/β-catenin pathway with SETDB1 knock-down.ConclusionSETDB1 is highly expressed in colorectal cancer and plays an important role in the invasion and metastasis through the Wnt/β-catenin pathway. It does so by direct methylation of β-catenin. This novel SETDB1/Wnt/β-catenin pathway provides a new strategy for the treatment of colorectal cancer.  相似文献   

16.
17.
The process of preadipocytes differentiation plays a vital role in adipose tissue expansion and many factors are involved in this event. Cathepsin B (CTSB), secreted from lysosome, has been reported in regulating a variety of physiological processes. In this study, we demonstrated CTSB promotes lipid accumulation and adipogenic genes expression in porcine primary preadipocytes by degrading fibronectin (Fn), a key component of extracellular matrix. Lithium chloride (LiCl) is an activator of Wnt/β-catenin signaling through stabilizing β-catenin. We found that CTSB can relieve the anti-adipogenic effects of LiCl, indicating that CTSB could impact Wnt/β-catenin signaling pathway. Interestingly, Fn is an important target gene of Wnt/β-catenin. So we considered that CTSB promote preadipocytes differentiation by suppressing these two pathways.  相似文献   

18.
Long noncoding RNAs (lncRNAs) were identified as a vital part in the development and progression of cancer in recent years. Colorectal neoplasia differentially expressed (CRNDE), a lncRNA, functions as an oncogene in some malignant neoplasias, but its role in the progression of osteosarcoma (OS) is still poorly understood. To dissect the difference in the expression of CRNDE, quantitative real-time polymerase chain reaction was utilized to evaluate it in OS tissues and cell lines (U2OS, MG63, and MNNG/HOS) compared with that in the adjacent normal tissues/osteoblast cells (hFOB1.19). The role of CRNDE in OS lines was assessed using Cell Counting Kit-8, colony formation, 5-ethynyl-2′-deoxyuridine staining, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling staining, flow cytometry, Transwell assays, and Western blot, respectively. The results demonstrated that the expression of CRNDE was high in OS tissues and cell lines, and partly induced by SP1. CRNDE knockdown attenuated OS cell proliferation and invasion and induced apoptosis and G0/G1 arrest. Moreover, the expression of mesenchymal markers N-cadherin, Vimentin and Snail were downregulated, while the expression of epithelial markers E-cadherin and ZO-1 were conversely upregulated due to CRNDE knockdown. The mechanistic investigations showed that CRNDE promoted glycogen synthase kinase-3β phosphorylation to activate the Wnt/β-catenin pathway. The results suggested that lncRNA CRNDE indeed contributed to OS proliferation, invasion, and epithelial-mesenchymal transition, working as an oncogene, demonstrating that lncRNA CRNDE may be a valid therapeutic target for the OS.  相似文献   

19.
BackgroundGallbladder cancer (GBC) is among the most lethal malignancies in the world, with a prognosis that is extremely poor. The results of previous studies suggest that tripartite motif containing 37 (TRIM37) contributes to the progression of numerous types of cancer. Nevertheless, there is little knowledge about the molecular mechanisms and functions of TRIM37 in GBC.MethodsA clinical significance assessment was conducted on TRIM37 following its detection by immunohistochemistry. In vitro and in vivo functional assays were performed to investigate the role of TRIM37 in GBC.ResultsIn this study, TRIM37 is upregulated in GBC tissues, which is associated with decreased histological differentiation, advanced TNM stage, and shorter overall survival rates. In vitro, TRIM37 knockdown inhibited cell proliferation and promoted apoptosis, and in vivo, TRIM37 knockdown suppressed GBC growth. Contrary to this, cell proliferation is increased in GBC cells when overexpression of TRIM37 is expressed. Mechanistic investigations revealed that TRIM37 promotes GBC progression through activation of the Wnt/β‑catenin signaling pathway via degradation of Axin1.ConclusionThe present study suggests that TRIM37 contributes to the development of GBC and thus provides an important biomarker for predicting GBC prognosis and an effective target for therapeutic intervention.  相似文献   

20.
Zhou  Lei  Sun  Shiwei  Zhang  Tieqi  Yu  Yueming  Xu  Liang  Li  Haoran  Wang  Minghai  Hong  Yang 《Molecular biology reports》2020,47(10):7439-7449
Molecular Biology Reports - The dysfunction of bone marrow mesenchymal stem cells (BMSCs) in balancing osteogenesis and adipogenesis plays an important role in the occurrence and development of...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号