首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphate-activated mitochondrial glutaminase (GLS2) is suggested to be linked with elevated glutamine metabolism. It plays an important role in catalyzing the hydrolysis of glutamine to glutamate. The present study was to investigate the potent effect of GLS2 on radioresistance of cervical carcinoma. GLS2 was examined in 144 cases of human cervical cancer specimens (58 radioresistant specimens, 86 radiosensitive specimens) and 15 adjacent normal cervical specimens with immunohistochemistry. HeLa cells were treated with a cumulative dose of 50 Gy X-rays, over 6 months, yielding the resistant sub-line HeLaR. The expressions of GLS2 were measured by Western blot. Radioresistance was tested by colony survival assay. Apoptosis was determined by flow cytometry. The levels of glutathione (GSH), reactive oxygen species (ROS), NAD+/NADH ratio and NADP+/NADPH ratio were detected by quantization assay kit. Xenografts were used to confirm the effect of GLS2 on radioresistance in vivo. The expressions of GLS2 were significantly enhanced in tumor tissues of radioresistant patients compared with that in radiosensitive patients. In vitro, the radioresistant cell line HeLaR exhibited significantly increased GLS2 levels than its parental cell line HeLa. GLS2 silenced radioresistant cell HeLaR shows substantially enhanced radiosensitivity with lower colony survival and higher apoptosis in response to radiation. In vivo, xenografts with GLS2 silenced HeLaR were more sensitive to radiation. At the molecular level, knock-down of GLS2 increased the intracellular ROS levels of HeLaR exposed to irradiation by decreasing the productions of antioxidant GSH, NADH and NADPH. GLS2 may have an important role in radioresistance in cervical cancer patients.  相似文献   

2.
Leukocyte trafficking involves specific recognition between P-selectin and L-selectin and PSGL-1 containing core 2-based O-glycans expressing sialyl Lewis x (SLe(x)) antigen. However, the structural identity of the glycan component(s) displayed by murine neutrophil PSGL-1 that contributes to its P-selectin counter-receptor activity has been uncertain, since these cells express little if any SLe(x) antigen, and because there have been no direct studies to examine murine PSGL-1 glycosylation. To address this uncertainty, we studied PSGL-1 glycosylation in the murine cell line WEHI-3 using metabolic-radiolabeling with (3)H-monosaccharide precursors to detect low-abundance O-glycan structures. We report that PSGL-1 from WEHI-3 cells expresses a di-sialylated core 2 O-glycan containing the SLe(x) antigen. This fucosylated O-glycan is scarce on PSGL-1 and essentially undetectable in total leukocyte glycoproteins from WEHI-3 cells. These results demonstrate that WEHI-3 cells selectively fucosylate PSGL-1 to generate functionally important core 2-based O-glycans containing the SLe(x) antigen.  相似文献   

3.
The parasitic helminth Schistosoma mansoni is a major public health concern in many developing countries. Glycoconjugates, and in particular the carbohydrate component of these products, represent the main immunogenic challenge to the host and could therefore represent one of the crucial determinants for successful parasite establishment. Here we report a comparative glycomics analysis of the N- and O-glycans derived from glycoproteins present in S. mansoni egg (egg-secreted protein) and cercarial (0-3-h released protein) secretions by a combination of mass spectrometric techniques. Our results show that S. mansoni secrete glycoproteins with glycosylation patterns that are complex and stage-specific. Cercarial stage secretions were dominated by N-glycans that were core-xylosylated, whereas N-glycans from egg secretions were predominantly core-difucosylated. O-Glycan core structures from cercarial secretions primarily consisted of the core sequence Galbeta1-->3(Galbeta1-->6)GalNAc, whereas egg-secreted O-glycans carried the mucin-type core 1 (Galbeta1-->3GalNAc) and 2 (Galbeta1-->3(GlcNAcbeta1-->6)GalNAc) structures. Additionally we identified a novel O-glycan core in both secretions in which a Gal residue is linked to the protein. Terminal structures of N- and O-glycans contained high levels of fucose and include stage-specific structures. These glycan structures identified in S. mansoni secretions are potentially antigenic motifs and ligands for carbohydrate-binding proteins of the host immune system.  相似文献   

4.

Background

The assembly of Ser/Thr-linked O-glycans of mucins with core 2 structures is initiated by polypeptide GalNAc-transferase (ppGalNAc-T), followed by the action of core 1 β3-Gal-transferase (C1GalT) and core 2 β6-GlcNAc-transferase (C2GnT). β4-Gal-transferase (β4GalT) extends core 2 and forms the backbone structure for biologically important epitopes. O-glycan structures are often abnormal in chronic diseases. The goal of this work is to determine if the activity and specificity of these enzymes are directed by the sequences and glycosylation of substrates.

Methods

We studied the specificities of four enzymes that synthesize extended O-glycan core 2 using as acceptor substrates synthetic mucin derived peptides and glycopeptides, substituted with GalNAc or O-glycan core structures 1, 2, 3, 4 and 6.

Results

Specific Thr residues were found to be preferred sites for the addition of GalNAc, and Pro in the + 3 position was found to especially enhance primary glycosylation. An inverse relationship was found between the size of adjacent glycans and the rate of GalNAc addition. All four enzymes could distinguish between substrates having different amino acid sequences and O-glycosylated sites. A short glycopeptide Galβ1–3GalNAcα-TAGV was identified as an efficient C2GnT substrate.

Conclusions

The activities of four enzymes assembling the extended core 2 structure are affected by the amino acid sequence and presence of carbohydrates on nearby residues in acceptor glycopeptides. In particular, the sequences and O-glycosylation patterns direct the addition of the first and second sugar residues by ppGalNAc-T and C1GalT which act in a site directed fashion.

General significance

Knowledge of site directed processing enhances our understanding of the control of O-glycosylation in normal cells and in disease.  相似文献   

5.
Long noncoding RNAs (lncRNAs) exert critical roles in the development of various cancers, including human laryngeal cancer. Radioresistance contributes to the predominant causes of laryngeal cancer recurrence after radiotherapy. The aim of our study was to investigate the association of dysregulated lncRNA and radiation resistance in human larynx squamous carcinoma. Here, we investigated the biological roles of lncRNA DiGeorge syndrome critical region gene 5 (DGCR5) in radioresistance of human laryngeal cancer. Two human larynx squamous carcinoma cell lines (Hep-2 and Hep-2R), with different radiosensitivities in vitro were used in the present study. We observed that DGCR5 was significantly upregulated in Hep-2R cells. Inhibition of DGCR5 by LV-shDGCR5 transfection restrained Hep-2R cell proliferation and sensitized cells to radiation. Reversely, overexpression of DGCR5 exhibited an opposite phenomenon in vitro. In addition, microRNA (miR)-195 was predicted as a direct downstream target of DGCR5. Dual-luciferase reporter and RNA immunoprecipitation assays verified the direct interaction between them. Meanwhile, miR-195 was observed to be reduced in Hep-2R cells and miR-195 mimics repressed Hep-2 cell growth. Moreover, radiosensitivity of Hep-2R cells was greatly enhanced by overexpression of miR-195, which could be reversed by upregulation of DGCR5. Finally, in vivo experiments were used to validate that knockdown of DGCR5 suppressed laryngeal carcinoma via targeting miR-195. In conclusion, we indicated that DGCR5 could contribute to the radioresistance of human laryngeal carcinoma cells via sponging miR-195.  相似文献   

6.
Poly-N-acetyllactosamine extension has been found in O-glycans in addition to N-glycans and glycosphingolipids. Attempts were made in HL-60 and K562 cells to determine the amount of poly-N-acetyllactosaminyl O-glycans in the major sialoglycoprotein, leukosialin. Leukosialin was immunoprecipitated from [3H]glucosamine-labeled HL-60 and K562 cells. Glycopeptides were prepared by Pronase digestion, and O-glycan-containing glycopeptides were isolated by affinity chromatography using Jacalin-agarose. The glycopeptides bound to Jacalin-agarose and those unbound were treated with alkaline borohydride, and the released O-glycans were fractionated by Bio-Gel P-4 filtration. Sequential glycosidase digestion of the O-glycans, with or without pretreatment by fucosidase or neuraminidase, revealed the following conclusions. 1) Leukosialin from HL-60 cells contains about 1-2 poly-N-acetyllactosaminyl O-glycan chains/molecule. 2) About 50% of these poly-N-acetyllactosaminyl O-glycans contain sialyl Le(x) termini, NeuNAc alpha 2-->3Gal beta 1-->4 (Fuc alpha 1-->3)GlcNAc beta 1-->R. The amount of sialyl Le(x) structure in leukosialin is roughly equivalent to that on cell surfaces of HL-60 cells. 3) Leukosialin from K562 cells, on the other hand, contains no detectable amount of poly-N-acetyllactosaminyl O-glycans. 4) The presence of poly-N-acetyllactosamine in O-glycans is dependent on the core 2 beta 1,6-N-acetylglucosaminyl transferase. 5) Jacalin-agarose binds to sialylated small oligosaccharides such as NeuNAc alpha 2-->3Gal beta 1-->3(NeuNAc alpha 2-->6) GalNAc but not the hexasaccharide NeuNAc alpha 2-->3Gal beta 1-->3(NeuNAc alpha 2-->3Gal beta 1-->4GlcNAc beta 1-->6) GalNAc. These results indicate that the formation of polylactosaminyl O-glycans and sialyl Le(x) structure in O-glycans is dependent on the core 2 formation.  相似文献   

7.
BackgroundProduction of various mucin-like glycoproteins could be useful for development of antibodies specific to disease-related glycoproteins as well as for the biosynthesis of clinically useful glycoproteins. A Saccharomyces cerevisiae strain capable of in vivo production of mucin-type core 1 structure (Galβ1-3GalNAcα1-O-Ser/Thr) has been reported, but a strain producing core 3 structure (GlcNAcβ1-3GalNAcα1-O-Ser/Thr) has not been constructed.MethodsTo generate core 3-producing strain, genes encoding uridine diphosphate (UDP)-Gal-4-epimerase, UDP-GalNAc transporter, UDP-GlcNAc transporter, and two glycosyltransferases were integrated into the genome. A Mucin-1-derived acceptor peptide (MUC1ap) was expressed as an acceptor. The amount of the resulting modified peptide was analyzed by HPLC.ResultsIntroduction of a codon-optimized UDP-GlcNAc:βGal β-1,3-N-acetylglucosaminyltransferase 6 (β3Gn-T6) gene yielded increases in β3Gn-T6 activity but did not alter the level of core 3 production. The highest in vitro activity of β3Gn-T6 was observed at Mn2 + concentrations of 10 mM and above. Supplementation of MnCl2 to the culture medium yielded increases of up to 25% in the accumulation of core 3 on the MUC1ap. The yeast invertase from the core 3-producing strain was less extensively N-glycosylated; however, it was partially restored by the addition of MnCl2 to the medium.ConclusionsPhysiological Mn2 + concentration in S. cerevisiae was insufficient to facilitate optimal synthesis of core 3. Mn2 + supplementation led to up-regulation of reaction of glycosylation in the Golgi, resulting in increases of core 3 production.General significanceThis study reveals that control of Mn2 + concentration is important for production of specific mammalian-type glycans in S. cerevisiae.  相似文献   

8.
L-selectin mediates lymphocyte homing by facilitating lymphocyte adhesion to addressins expressed in the high endothelial venules (HEV) of secondary lymphoid organs. Peripheral node addressin recognized by the MECA-79 antibody is apparently part of the L-selectin ligand, but its chemical nature has been undefined. We now identify a sulfated extended core1 mucin-type O-glycan, Gal beta 1-->4(sulfo-->6)GlcNAc beta 1-->3Gal beta 1-->3GalNAc, as the MECA-79 epitope. Molecular cloning of a HEV-expressed core1-beta 1,3-N-acetylglucosaminyltransferase (Core1-beta 3GlcNAcT) enabled the construction of the 6-sulfo sialyl Lewis x on extended core1 O-glycans, recapitulating the potent L-selectin-mediated, shear-dependent adhesion observed with novel L-selectin ligands derived from core2 beta1,6-N-acetylglucosaminyltransferase-I null mice. These results identify Core1-beta 3GlcNAcT and its cognate extended core1 O-glycans as essential participants in the expression of the MECA-79-positive, HEV-specific L-selectin ligands required for lymphocyte homing.  相似文献   

9.
The HNK-1 glycan, sulfo-->3GlcAbeta1-->3Galbeta1-->4GlcNAcbeta1-->R, is highly expressed in neuronal cells and apparently plays critical roles in neuronal cell migration and axonal extension. The HNK-1 glycan synthesis is initiated by the addition of beta1,3-linked GlcA to N-acetyllactosamine followed by sulfation of the C-3 position of GlcA. The cDNAs encoding beta1,3-glucuronyltransferase (GlcAT-P) and HNK-1 sulfotransferase (HNK-1ST) have been recently cloned. Among various adhesion molecules, the neural cell adhesion molecule (NCAM) was shown to contain HNK-1 glycan on N-glycans. In the present study, we first demonstrated that NCAM also bears HNK-1 glycan attached to O-glycans when NCAM contains the O-glycan attachment scaffold, muscle-specific domain, and is synthesized in the presence of core 2 beta1,6-N-acetylglucosaminyltransferase, GlcAT-P, and HNK-1ST. Structural analysis of the HNK-1 glycan revealed that the HNK-1 glycan is attached on core 2 branched O-glycans, sulfo-->3GlcAbeta1-->3Galbeta1-->4GlcNAcbeta1-->6(Galbeta1-->3)GalNAc. Using synthetic oligosaccharides as acceptors, we found that GlcAT-P and HNK-1ST almost equally act on oligosaccharides, mimicking N- and O-glycans. By contrast, HNK-1 glycan was much more efficiently added to N-glycans than O-glycans when NCAM was used as an acceptor. These results are consistent with our results showing that HNK-1 glycan is minimally attached to O-glycans of NCAM in fetal brain, heart, and the myoblast cell line, C2C12. These results combined together indicate that HNK-1 glycan can be synthesized on core 2 branched O-glycans but that the HNK-1 glycan is preferentially added on N-glycans over O-glycans of NCAM, probably because N-glycans are extended further than O-glycans attached to NCAM containing the muscle-specific domain.  相似文献   

10.
BackgroundLepidopteran insect cells withstand multifold higher radiation doses and suffer far less DNA damage despite carrying numerous structural/functional homologies with mammalian cells. Since DNA–histone interactions significantly influence radiation-induced DNA damage, we investigated the role of histones in insect cell radioresistance.MethodsModified comet assay was used to assess the γ-radiation-induced DNA damage following serial histone depletion by varied salt concentrations. Acid–Urea–Triton (AUT) gel analysis combined with in silico predictions was used to compare mammalian and insect histones and acetylation status while HDAC activity was assessed/modified for studying the latter's role in radioresistance. Cell death was measured by morphological analysis and flow cytometry.ResultsHigh-salt extraction pattern from Sf9 nuclei suggested stronger DNA–histone affinity as the two core histones H2A/H2B could be extracted at much higher (2 M) concentration as compared to 1.2 M NaCl in mammalian (AA8) cells. Electrophoretic mobility of unirradiated Sf9 cells remained unaltered at all salt concentrations (0.14 M–2 M NaCl), and radiation-induced DNA damage increased only by 2 M-NaCl pre-treatment. In silico analysis confirmed excellent conservation of Lepidopteran H2A/H2B sequence with human histones including comparable N-terminal lysine residues, yet these had ~ 60% lower acetylation. Importantly, insect cells showed ~ 70% higher histone deacetylase activity whose inhibition by Trichostatin-A reversed hypo-acetylation state and caused significant radiosensitization, thereby confirming the protective contribution of reduced acetylation.ConclusionOur study reveals that the hypo-acetylated state of well-conserved core histones, maintained by considerable HDAC activity, contributes significantly in Lepidopteran radioresistance.General SignificanceThis investigation shows constitutively high activity of HDACs as a potential radioprotective mechanism existing in insect cells.  相似文献   

11.
We describe for the first time the chemical synthesis of a tetramannoside, containing both α (1  2) and β (1  2) linkages. Dodecylthio (lauryl) glycosides were prepared from odorless dodecyl thiol and used as donors for the glycosylation steps. This tetramannoside, was coupled to a mantyl group, and revealed to be a perfect substrate of β-mannosyltransferase Bmt3, confirming the proposed specificity and allowing the preparation of a pentamannoside sequence (β Man (1,2) β Man (1,2) α Man (1,2) α Man (1,2) α Man) usable as a novel substrate for further elongation studies.  相似文献   

12.
The glycosylation abilities of snails deserve attention, because snail species serve as intermediate hosts in the developmental cycles of some human and cattle parasites. In analogy to many other host-pathogen relations, the glycosylation of snail proteins may likewise contribute to these host-parasite interactions. Here we present an overview on the O-glycan structures of 8 different snails (land and water snails, with or without shell): Arion lusitanicus, Achatina fulica, Biomphalaria glabrata, Cepaea hortensis, Clea helena, Helix pomatia, Limax maximus and Planorbarius corneus. The O-glycans were released from the purified snail proteins by β-elimination. Further analysis was carried out by liquid chromatography coupled to electrospray ionization mass spectrometry and - for the main structures - by gas chromatography/mass spectrometry. Snail O-glycans are built from the four monosaccharide constituents: N-acetylgalactosamine, galactose, mannose and fucose. An additional modification is a methylation of the hexoses. The common trisaccharide core structure was determined in Arion lusitanicus to be N-acetylgalactosamine linked to the protein elongated by two 4-O-methylated galactose residues. Further elongations by methylated and unmethylated galactose and mannose residues and/or fucose are present. The typical snail O-glycan structures are different to those so far described. Similar to snail N-glycan structures they display methylated hexose residues.  相似文献   

13.
The Golgi ion homeostasis is tightly regulated to ensure essential cellular processes such as glycosylation, yet our understanding of this regulation remains incomplete. Gdt1p is a member of the conserved Uncharacterized Protein Family (UPF0016). Our previous work suggested that Gdt1p may function in the Golgi by regulating Golgi Ca2 +/Mn2 + homeostasis. NMR structural analysis of the polymannan chains isolated from yeasts showed that the gdt1Δ mutant cultured in presence of high Ca2 + concentration, as well as the pmr1Δ and gdt1Δ/pmr1Δ strains presented strong late Golgi glycosylation defects with a lack of α-1,2 mannoses substitution and α-1,3 mannoses termination. The addition of Mn2 + confirmed the rescue of these defects. Interestingly, our structural data confirmed that the glycosylation defect in pmr1Δ could also completely be suppressed by the addition of Ca2 +. The use of Pmr1p mutants either defective for Ca2 + or Mn2 + transport or both revealed that the suppression of the observed glycosylation defect in pmr1Δ strains by the intraluminal Golgi Ca2 + requires the activity of Gdt1p. These data support the hypothesis that Gdt1p, in order to sustain the Golgi glycosylation process, imports Mn2 + inside the Golgi lumen when Pmr1p exclusively transports Ca2 +. Our results also reinforce the functional link between Gdt1p and Pmr1p as we highlighted that Gdt1p was a Mn2 + sensitive protein whose abundance was directly dependent on the nature of the ion transported by Pmr1p. Finally, this study demonstrated that the aspartic residues of the two conserved motifs E-x-G-D-[KR], likely constituting the cation binding sites of Gdt1p, play a crucial role in Golgi glycosylation and hence in Mn2 +/Ca2 + transport.  相似文献   

14.
The nature of the molecules underlying the radioresistance phenotype of laryngeal cancer cells remains to be established. We initially generated radioresistant laryngeal cancer cell lines from human HEp‐2 cells with fractionated radiation. These RR‐HEp‐2 cells and isolated clones displayed more radioresistant and anti‐apoptotic phenotypes than parental HEp‐2 cells after radiation. Characteristics of RR‐Hep‐2 cell lines were confirmed by upregulation of radioresistance‐related genes, such as epidermal growth factor receptor, Hsp90, and Bcl‐xl. Subsequently, we examined proteome changes between HEp‐2 and RR‐HEp‐2 cells and identified 16 proteins showing significantly altered expression levels. Interestingly, protein expression of chloride intracellular channel 1 (CLIC1) was markedly suppressed in RR‐HEp‐2 cells, compared with non‐irradiated control cells. Suppression of CLIC1 with an indanyloxyacetic acid‐94 or small interfering RNA led to radioresistance in HEp‐2 cells by suppressing the radiation‐induced cellular ROS level. However, ectopic overexpression of CLIC1 induced radiosensitivity in RR‐HEp‐2 cells via induction of ROS level after radiation, suggesting that the protein acts as a positive regulator of ROS production. Our results collectively indicate that suppression of CLIC1 contributes to acquisition of the radioresistance phenotype of laryngeal cancer cells via inhibition of ROS production, implying that this protein is an important candidate molecule for radiotherapy in radioresistant laryngeal cancer cells.  相似文献   

15.
16.
Porcine aortic endothelial cells (PAECs) produce glycoproteins with important biological functions, such as the control of cell adhesion, blood clotting, blood pressure, the immune system, and apoptosis. Cell surface glycoproteins play important roles in these biological activities. To understand the control of cell surface glycosylation, we elucidated biosynthetic pathways leading to N- and O-glycans in PAECs. Based on the enzyme activities, PAECs should be rich in complex biantennary N-glycans. In addition, the enzymes synthesizing complex O-glycans with core 1 and 2 structures are present in PAECs. The first enzyme of the O-glycosylation pathway, polypeptide GalNAc-transferase, was particularly active. Its specificity toward synthetic peptide substrates was found to be similar to that of purified bovine colostrum enzyme T1. A significant fraction of PAECs treated with tumour necrosis factor alpha or human serum detached from the culture plate, and most of these cells were apoptotic. The apoptotic cell population exhibited decreased core 2 beta 6-GlcNAc-transferase activity. In contrast, the activities of core 1 beta 3-Gal-transferase, which synthesizes O-glycan core 1, and of alpha 3-sialyltransferase (O), which sialylates core 1, were increased in apoptotic PAECs. Thus, apoptotic PAECs are predicted to have fewer complex O-glycans and a higher proportion of short, sialylated core 1 chains.  相似文献   

17.
Many functional glycoproteins are expressed on the lymphocyte cell surface. Some of them carry O-linked oligosaccharides (O-glycans), which are conjugated through serine or threonine residues. During various biological processes, including T-cell activation, a tetrasaccharide on the T-cell surface is dramatically converted to a branched hexasaccharide, called core2 O-glycan. The same structural change in O-glycans is also found on the lymphocytes from patients with immunodeficiency conditions such as Wiskott-Aldrich syndrome and AIDS. Several studies revealing the roles of core2 O-glycans in immune responses show that this is a biologically significant change. In particular, core2 O-glycans expressed on the cell surface reduce cell-cell interactions, thereby regulating immune responses. Furthermore, core2 O-glycan is a key backbone structure in forming selectin ligands. Thus, O-linked oligosaccharides, in particular those containing core2 branches, play vital roles in immune responses and may play dual roles in certain situations. This review will summarize the results obtained from various studies investigating the roles of O-glycans in immunological processes. BioEssays 23:46-53, 2001.  相似文献   

18.
The human genome contains at least 35 genes that encode Golgi sulfotransferases that function in the secretory pathway, where they are involved in decorating glycosaminoglycans, glycolipids, and glycoproteins with sulfate groups. Although a number of important interactions by proteins such as selectins, galectins, and sialic acid–binding immunoglobulin-like lectins are thought to mainly rely on sulfated O-glycans, our insight into the sulfotransferases that modify these glycoproteins, and in particular GalNAc-type O-glycoproteins, is limited. Moreover, sulfated mucins appear to accumulate in respiratory diseases, arthritis, and cancer. To explore further the genetic and biosynthetic regulation of sulfated O-glycans, here we expanded a cell-based glycan array in the human embryonic kidney 293 (HEK293) cell line with sulfation capacities. We stably engineered O-glycan sulfation capacities in HEK293 cells by site-directed knockin of sulfotransferase genes in combination with knockout of genes to eliminate endogenous O-glycan branching (core2 synthase gene GCNT1) and/or sialylation capacities in order to provide simplified substrates (core1 Galβ1–3GalNAcα1–O-Ser/Thr) for the introduced sulfotransferases. Expression of the galactose 3-O-sulfotransferase 2 in HEK293 cells resulted in sulfation of core1 and core2 O-glycans, whereas expression of galactose 3-O-sulfotransferase 4 resulted in sulfation of core1 only. We used the engineered cell library to dissect the binding specificity of galectin-4 and confirmed binding to the 3-O-sulfo-core1 O-glycan. This is a first step toward expanding the emerging cell-based glycan arrays with the important sulfation modification for display and production of glycoconjugates with sulfated O-glycans.  相似文献   

19.
The relationship between surface electromyography (SEMG) amplitude and the ventilatory threshold has been extensively studied. However, previous studies of muscle fiber conduction velocity (MFCV) are scarce and present insufficient evidence concerning the relationship between MFCV and metabolic responses during cycling. Based on that fact, the purpose of this study is twofold: (1) to investigate the existence of a MFCV threshold (MFCVT) during cycling and (2) to verify if this possible breakpoint is correlated with the ventilatory threshold (VT) and the SEMG threshold (SEMGT). Eight trained male cyclists (age 36.0 ± 9.7 years) performed an incremental cycling test with initial workload of 150 W gradually incremented by 20 W min?1 until the exhaustion. Gas analyses were conducted using a breath-by-breath open-circuit spirometry and SEMG were registered from vastus lateralis in each pedaling cycle with a linear array of electrodes. A bi-segmental linear regression computer algorithm was used to estimate VT, MFCVT and SEMGT respectively in the carbon dioxide production (VCO2), MFCV and electromyography root mean square (EMG RMS) curves. The one way ANOVA for repeated measures did not reveal any significant difference among VT (77.1 ± 7.5% of VO2max), MFCVT (80.3 ± 10.4% of VO2max) and SEMGT (81.9 ± 11.7% of VO2max). The Bland and Altman procedure confirmed a good concordance between SEMGT and VT (Bias = 5.5 of %VO2max) as well as MFCVT and VT (Bias = 5.2 of %VO2max). The present findings suggest that muscle fiber conduction velocity threshold is a valid and reliable non-invasive tool to obtain information about ventilatory threshold in trained cyclists.  相似文献   

20.
AimsCardiac function is modulated by the sympathetic nervous system through β-adrenergic receptor (β-AR) activity and this represents the main regulatory mechanism for cardiac performance. To date, however, the metabolic and molecular responses to β2-agonists are not well characterized. Therefore, we studied the inotropic effect and signaling response to selective β2-AR activation by tulobuterol.Main methodsStrips of rat right ventricle were electrically stimulated (1 Hz) in standard Tyrode solution (95% O2, 5% CO2) in the presence of the β1-antagonist CGP-20712A (1 μM). A cumulative dose–response curve for tulobuterol (0.1–10 μM), in the presence or absence of the phosphodiesterase (PDE) inhibitor IBMX (30 μM), or 10 min incubation (1 μM) with the β2-agonist tulobuterol was performed.Key findingsβ2-AR stimulation induced a positive inotropic effect (maximal effect = 33 ± 3.3%) and a decrease in the time required for half relaxation (from 45 ± 0.6 to 31 ± 1.8 ms, ? 30%, p < 0.001) after the inhibition of PDEs. After 10 min of β2-AR stimulation, p-AMPKαT172 (54%), p-PKBT308 (38%), p-AS160T642 (46%) and p-CREBS133 (63%) increased, without any change in p-PKAT197.SignificanceThese results suggest that the regulation of ventricular contractility is not the primary function of the β2-AR. Rather, β2-AR could function to activate PKB and AMPK signaling, thereby modulating muscle mass and energetic metabolism of rat ventricular muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号