首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Duan  Xianlan  Zhao  Lian  Jin  Wancun  Xiao  Qinxin  Peng  Yani  Huang  Gan  Li  Xia  DaSilva-Arnold  Sonia  Yu  Haibo  Zhou  Zhiguang 《Molecular biology reports》2020,47(10):7557-7566
Molecular Biology Reports - The main pathogenesis of type 1 diabetes mellitus (T1DM) is autoimmune-mediated apoptosis of pancreatic islet β cells. We sought to characterize the function of...  相似文献   

6.
MicroRNAs (miRNAs) play an essential role in regulating cell differentiation either by inhibiting mRNA translation or by inducing its degradation. However, the role of miRNAs in odontoblastic cell differentaion is largely unknown. In the present study, we demonstrate that the expression of miR-27 was significantly increased during MDPC-23 odontoblastic cell differentiation. Furthermore, the up-regulation of miR-27 promotes the differentiation of MDPC-23 odontoblastic cells and accelerates mineralization without cell proliferation. In addition, our results of target gene prediction revealed that the mRNA of adenomatous polyposis coli (APC) associated with Wnt/β-catenin signaling pathway has miR-27 binding site in the its 3′ UTR and is suppressed by miR-27. Subsequentially, the down-regulated APC by miR-27 triggered the activation of Wnt/β-catenin signaling through accumulation of β-catenin in the nucleus. Our data suggest that miR-27 promotes MDPC-23 odontoblastic cell differentiation by targeting APC and activating Wnt/β-catenin signaling. Therefore, miR-27 might be considered a critical candidate as an odontoblastic differentiation molecular target for the development of miRNA based therapeutic agents in the dental medicine.  相似文献   

7.
Inflammation is a self-protection mechanism that can be triggered when innate immune cells detect infection. Eradication of pathogen infection requires appropriate immune and inflammatory responses, but excessive inflammatory responses can cause uncontrolled inflammation, autoimmune diseases, or pathogen dissemination. Mounting evidence has shown that microRNAs(miRNAs) in mammals act as important and versatile regulators of innate immunity and inflammation. However, miRNAmediated regulation networks are largely unknown in inflammatory responses in lower vertebrates. Here, miR-144 and miR-217 are identified as negative regulators in teleost inflammatory responses. We find that Vibrio harveyi and lipopolysaccharide(LPS)treatment significantly upregulate the expression of fish miR-144 and miR-217. Upregulated miR-144 and miR-217 suppress LPS-induced inflammatory cytokine expression by targeting nucleotide-binding oligomerization domain-containing protein 1(NOD1), thereby avoiding excessive inflammatory responses. In addition, miR-144 and miR-217 regulate inflammatory responses through NOD1-induced nuclear factor kappa(NF-κB) signaling pathways. These findings demonstrate that miR-144 and miR-217 play regulatory roles in inflammatory responses by modulating the NOD1-induced NF-κB signaling pathway.  相似文献   

8.
9.
Qi J  Qiao Y  Wang P  Li S  Zhao W  Gao C 《FEBS letters》2012,586(8):1201-1207
Ligation of TLR4 with LPS in macrophages leads to the production of proinflammatory cytokines, which are central to eliminate viral and bacterial infection. However, uncontrolled TLR4 activation may contribute to pathogenesis of inflammatory diseases such as septic shock. In this study, we found microRNA-210 was induced in murine macrophages by LPS. Transfection of miR-210 mimics significantly inhibited LPS-induced production of inflammatory cytokines. In contrast, transfection of anti-miR-210 inhibitors increased LPS-induced expression of proinflammatory cytokines. Furthermore, we demonstrated that miR-210 targets NF-κB1. Therefore, our data identify miR-210 as a very important feedback negative regulator for LPS-induced production of proinflammatory cytokines.  相似文献   

10.
Accumulating evidences suggest that neuroinflammation is a pathological hallmark of Parkinson’s disease (PD), a neurodegenerative disorder characterized by loss of dopaminergic neurons in substantia nigra pars compacta (SNpc). MicroRNAs have been recently recognized as crucial regulators of inflammatory responses. Here, we found significant downregulation of microRNA-30e (miR-30e) in SNpc of MPTP-induced PD mice. Next, we employed miR-30e agomir to upregulate miR-30e expression in MPTP-treated mice. Our results showed that delivery of miR-30e agomir remarkably improved motor behavioral deficits and neuronal activity, and inhibited the loss of dopamine neurons. Moreover, the increased α-synuclein protein expression in SNpc of MPTP-PD mice was alleviated by the upregulation of miR-30e. Further, miR-30e agomir administration also attenuated the marked increase of inflammatory cytokines, such as TNF-α, COX-2, iNOS, and restored the decreased secretion of BDNF in SNpc. In addition, we demonstrated for the first time that miR-30e directly targeted to Nlrp3, thus suppressing Nlrp3 mRNA and protein expression. Finally, miR-30e upregulation significantly inhibited the activation of Nlrp3 inflammasome as evident from the decreased Nlrp3, Caspase-1 and ASC expressions and IL-18 and IL-1β secretions. Taken together, our study demonstrates that miR-30e ameliorates neuroinflammation in the MPTP model of PD by decreasing Nlrp3 inflammasome activity. These findings suggesting that miR30e may be a key inflammation-mediated molecule that could be a potential target for PD therapeutics.  相似文献   

11.
12.
13.
T-cell receptor (TCR)-induced T-cell activation is a critical event in adaptive immune responses. The engagement of TCR complex by antigen along with the activation of the costimulatory receptors trigger a cascade of intracellular signaling, in which caspase recruitment domain-containing membrane-associated guanylate kinase 1 (CARMA1) is a crucial scaffold protein. Upon stimulation, CARMA1 recruits downstream molecules including B-cell CLL/lymphoma 10 (Bcl10), mucosa-associated lymphoid tissue lymphoma translocation gene 1 (MALT1), and TRAF6 to assemble a specific TCR-induced signalosome that triggers NF-κB and JNK activation. In this report, we identified protein kinase Cδ (PKCδ) as a CARMA1-associated protein by a biochemical affinity purification approach. PKCδ interacted with CARMA1 in TCR stimulation-dependent manner in Jurkat T cells. Overexpression of PKCδ inhibited CARMA1-mediated NF-κB activation, whereas knockdown of PKCδ potentiated TCR-triggered NF-κB activation and IL-2 secretion in Jurkat T cells. Reconstitution experiments with PKCδ kinase-dead mutant indicated that the kinase activity of PKCδ was dispensable for its ability to inhibit TCR-triggered NF-κB activation. Furthermore, we found that PKCδ inhibited the interaction between MALT1 and TRAF6, but not the association of CARMA1 with PKCθ, Bcl10, or MALT1. These observations suggest that PKCδ is a negative regulator in T cell activation through inhibiting the assembly of CARMA1 signalosome.  相似文献   

14.
15.
16.
17.
Wang Z  Cao L  Kang R  Yang M  Liu L  Zhao Y  Yu Y  Xie M  Yin X  Livesey KM  Tang D 《Autophagy》2011,7(4):401-411
PML-RARα oncoprotein is a fusion protein of promyelocytic leukemia (PML) and the retinoic acid receptor-α (RARα) and causes acute promyelocytic leukemias (APL). A hallmark of all-trans retinoic acid (ATRA) responses in APL is PML-RARα degradation which promotes cell differentiation. Here, we demonstrated that autophagy is a crucial regulator of PML-RARα degradation. Inhibition of autophagy by short hairpin (sh) RNA that target essential autophagy genes such as Atg1, Atg5 and PI3KC3 and by autophagy inhibitors (e.g. 3-methyladenine), blocked PML-RARα degradation and subsequently granulocytic differentiation of human myeloid leukemic cells. In contrast, rapamycin, the mTOR kinase inhibitor, enhanced autophagy and promoted ATRA-induced PML-RARα degradation and myeloid cell differentiation. Moreover, PML-RARα co-immunoprecipitated with ubiquitin-binding adaptor protein p62/SQSTM1, which is degraded through autophagy. Furthermore, knockdown of p62/SQSTM1 inhibited ATRA-induced PML-RARα degradation and myeloid cell differentiation. The identification of PML-RARα as a target of autophagy provides new insight into the mechanism of action of ATRA and its specificity for APL.  相似文献   

18.
In mantle cell lymphoma (MCL), over-expression of cyclin D1 is the hallmark of malignant transformation and results from it’s juxtaposition to the immunoglobulin heavy chain enhancer. In addition, genomic deletions or point mutations leading to premature truncation of the cyclin D1 3’UTR have been reported in a several MCL patients as well as in cell lines isolated from various tumors types. We demonstrate that the expression of cyclin D1 with or without the 3’UTR has different phenotypic consequences in stably transduced fibroblasts, with the hyper-proliferative phenotype of cyclin D1 closely linked to the deletion of its 3’UTR. In our study, the loss of the cyclin D1 3’UTR led to a significant upregulation of the protein. However, the loss of AU-rich elements (AREs) from the cyclin D1 UTR results in a significant decrease in cyclin D1 protein and UTR-tagged reporter expression. In contrast, the levels of cyclin D1 protein can be significantly reduced by microRNAs of the miR15/16 family and the miR17-92 cluster that directly target the cyclin D1 3’UTR. Most importantly, these microRNAs regulated the levels of the endogenous cyclin D1 protein encoded by an mRNA with a full 3’UTR but not with 3’ UTR deletions. Taken together, our data highlight the regulatory role of the cyclin D1 3’UTR in the expression and phenotype of cyclin D1 and suggest that in MCL and solid tumors with cyclin D1 3’UTR mutations, the loss of microRNA target sites, rather than ARE elements contribute to the pathogenic over-expression of the cyclin D1 protein.  相似文献   

19.
20.
Jiang  Xue  Yi  Saini  Liu  Qin  Zhang  Jinqiang 《Cytotechnology》2022,74(3):407-420
Cytotechnology - Microglia has been reported to be able to regulate the proliferation, differentiation and survival of adult neural stem/progenitor cells (NSPCs) by modulating the microenvironment,...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号