首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A class of compounds, usually referred to as ADRY reagents, destabilize intermediates in the photosynthetic water-oxidizing process. The effects of these species on the reduction kinetics of Z?, the oxidized donor to P-680, have been monitored in Tris-washed chloroplasts by following the decay of EPR Signal IIf. In the presence of ADRY reagents (e.g., sodium picrate, carbonyl cyanide m-chlorophenylhydrazone) this process follows an exponential time course, the decay half-time of which decreases as the ADRY reagent concentration increases. From this pseudo-first-order behavior, the second-order rate constants for four commonly used ADRY reagents have been extracted. The ADRY-induced acceleration in Z? reduction proceeds independently of conditions imposed on the acceptor side of Photosystem II and shows no synergism with exogenous electron donors. These observations are most easily rationalized in terms of a model which proposes direct reduction of Z? by the ADRY reagent followed by regeneration of the reduced ADRY reagent in a nonspecific reaction with membrane components such as carotenoids, chlorophyll or protein. A comparison of the second-order rate constants we obtain for ADRY reagents in their reaction with Z? in Tris-washed chloroplasts with those obtained from the literature for the ADRY- reagent induced deactivation of states S2 and S3 in oxygen-evolving chloroplasts reveals a close similarity between the two processes. From this observation, a general model for the action of ADRY reagents in destabilizing the high-potential oxidizing equivalents generated in Photosystem II is proposed.  相似文献   

2.
The room-temperature EPR characteristics of Photosystem II reaction center preparations from spinach, pokeweed and Chlamydomonas reinhardii have been investigated. In all preparations a light-induced increase in EPR Signal II, which arises from the oxidized form of a donor to P-680+, is observed. Spin quantitation, with potassium nitrosodisulfonate as a spin standard, demonstrates that the Signal II species, Z?, is present in approx. 60% of the reaction centers. In response to a flash, the increase in Signal II spin concentration is complete within the 98 μs response time of our instrument. The decay of Z? is dependent on the composition of the particle suspension medium and is accelerated by addition of either reducing agents or lipophilic anions in a process which is first order in these reagents. Comparison of these results with optical data reported previously (Diner, B.A. and Bowes, J.M. (1981) in Proceedings of the 5th International Congress on Photosynthesis (Akoyunoglou, G., ed.), Vol. 3, pp. 875–883, Balaban, Philadelphia), supports the identification of Z with the P-680+ donor, D1. From the polypeptide composition of the particles used in this study, we conclude that Z is an integral component of the reaction center and use this conclusion to construct a model for the organization of Photosystem II.  相似文献   

3.
The role of Cl? in the electron transfer reactions of the oxidizing side of Photosystem II (PS II) has been studied by measuring the fluorescence yield changes corresponding to the reduction of P+-680, the PS II reaction center chlorophyll, by the secondary PS II donor, Z. In Cl?-depleted chloroplasts, a rapid rise in fluorescence yield was observed following the first and second flashes, but not during the third or subsequent flashes. These results indicate that there exists an additional endogenous electron donor beyond P-680 and Z in Cl?-depleted systems. In contrast, the terminal endogenous donor on the oxidizing side of PS II in Tris-washed preparations has previously been shown to be Z, the component giving rise to EPR signals IIf and IIvf. The rate of reduction of P+-680 in the Cl?-depleted chloroplasts was as rapid as that measured in uninhibited systems, within the time resolution of our instrument. Again, this is in contrast to Tris-washed preparations in which a dramatic decrease in the rate if this reaction has been previously reported. We have also carried out a preliminary study on the rate of rereduction of Z+ in the Cl?-depleted system. Under steady-state conditions, the reduction half-time of Z+ in uninhibited systems was about 450 μs, while in the Cl?-depleted chloroplasts, the reduction of Z+ was biphasic, one phase with a half-time of about 120 ms, and a slower phase with a half-time of several seconds. The appearance of the quenching state due to P+-680 observed following the third flash on excitation of Cl?-depleted chloroplasts was delayed by two flashed when low concentrations of NH2OH (20–50 μM) were included in the medium. Hydrazine at somewhat higher concentrations showed the same effect. This is taken to indicate that the reactions leading to PS II oxidation of NH2OH or NH2NH2 are uninhibited by Cl? depletion. Addition of NH2OH at low concentrations to Tris-washed chloroplasts did not alter the pattern of the fluorescence yield, indicating that the reactions leading to the NH2OH oxidation present in Cl?-depleted systems are absent following Tris inhibition. The results are discussed in terms of an inhibition by Cl? depletion of the reactions of the oxygen-evolving complex. It is suggested that no intermediary redox couple exists between the oxygen-evolving complex and Z, and that Z+ is reduced directly by Mn of the complex. In terms of the S-state model, Cl? depletion appears to inhibit the advancement of the mechanism beyond S2, but not to inhibit the transitions from S0 to S1, or from S1 to S2.  相似文献   

4.
Upon addition of hydroxylamine to chloroplasts or photosystem II preparations, the EPR signal of Z? disappears and a new signal is observed. From its shape and g-value this signal is identified with the oxidized reaction center chlorophyll, P680+. The decay of P680+ occurs with a halftime of ? 200 μs and apparently is the result of a back reaction with the reduced form of the primary acceptor, QA. This mode of hydroxylamine inhibition is reversible. These observations indicate that hydroxylamine, in addition to its well known inhibitory action on the oxygen evolving complex, is also able to disrupt physiological electron flow to P680 itself.  相似文献   

5.
EPR measurements on inside-out thylakoids revealed that salt-washing, known to inhibit oxygen evolution and release a 23 and a 16 kDa protein, induced a Signal IIf and decreased the EPR signal from state S2. Readdition of the released 23 kDa protein restored the oxygen evolution and decreased the Signal IIf, but did not relieve the decrease in the state S2 signal. It is suggested that salt-washing inhibits the electron transfer from the oxygen-evolving site to Z, the physiological donor to P680. In inhibited photosystem II units lacking Signal IIf, Z+ is rapidly reduced, possibly by a modified S-cycle unable to evolve oxygen.  相似文献   

6.
7.
The functional connection between redox component Y z identified as Tyr-161 of polypeptide D-1 (Debus et al. 1988) and P680+ was analyzed by measurements of laser flash induced absorption changes at 830 nm in PS II membrane fragments from spinach. It was found that neither DCMU nor the ADRY agent 2-(3-chloro-4-trifluoromethyl) anilino-3,5-dinitrothiophene (ANT 2p) affects the rate of P680+ reduction by Y z under conditions where the catalytic site of water oxidation stays in the redox state S1. In contrast to that, a drastic retardation is observed after mild trypsin treatment at pH=6.0. This effect which is stimualted by flash illumination can be largely reversed by Ca2+. The above mentioned data lead to the following conclusions: (a) the segment of polypeptide D-1 containing Tyr-161 and coordination sites of P680 is not allosterically affected by structural changes due to DCMU binding at the QB-site which is also located in D-1. (b) ANT 2p as a strong protonophoric uncoupler and ADRY agent does not modify the reaction coordinate of P680+ reduction by Y z , and (c) Ca2+ could play a functional role for the electronic and vibrational coupling between the redox groups Y z and P680. The electron transport from Y z to P680+ is discussed within the framework of a nonadiabatic process. Based on thermodynamic considerations the reorganization energy is estimated to be in the order of 0.5 V.Abbreviations ADRY acceleration of the deactivation reactions of the water splitting enzyme system Y - ANT 2p 2-(3-chloro-4-trifluoromethyl)anilino-3,5 dinitrothiophene - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - MES 2[N-Morpholino]ethanesulfonic acid - PS II photosystem II - QA, QB primary and secondary plastoquinone acceptor of photosystem II - S i redox states of the catalytic site of water oxidation - Y z redox active Tyr-161 of polypeptide D-1  相似文献   

8.
Alain Boussac  Anne Lise Etienne 《BBA》1984,766(3):576-581
In Tris-washed Photosystem-II particles we are able to induce an EPR signal in the dark by addition of an iridium salt (K2IrCl6). This signal is attributed to signal IIs (slow) (D+) and the redox titration gives an Em value of 760 mV for the couple D+D. On the basis of our previous studies on the equilibrium between D+Z and DZ+ (K = 104) (Boussac, A. and Etienne, A.L. (1982) Biochem. Biophys. Res. Commun. 109, 1200–1205), we therefore attribute a value of 1 V for the Em of the Z+Z couple. A second effect of K2IrCl6 is to modify the spectral characteristics of signal II. We conclude that K2IrCl6 is able to change the environment of the species from which signal IIs and signal IIf originate.  相似文献   

9.
Incubation of PS II membranes with herbicides results in changes in EPR signals arising from reaction centre components. Dinoseb, a phenolic herbicide which binds to the reaction centre polypeptide, changes the width and form of the EPR signal arising from photoreduced Q?AFe. o-Phenanthroline slightly broadens the Q?AFe signal. These effects are attributed to changes in the interaction between the semi-quinone and the iron. DCMU, which binds to the 32 kDa protein, has virtually no effect on the width of the Q?AFe signal but does give rise to an increase in its amplitude. This could result from a change in redox state of an interacting component. Herbicide effects can also be seen when Q?AFe is chemically reduced and these seen to be reflected by changes in splitting and amplitude of the split pheophytin? signal. Dinoseb also results in the loss of ‘Signal II dark’, the conversion of reduced high-potential cytochrome b559 to its oxidized low-potential form and the presence of transiently photooxidized carotenoid after a flash at 25°C; these effects indicate that dinoseb may also act as an ADRY reagent.  相似文献   

10.
We have measured the rate constant for the formation of the oxidized chlorophyll a electron donor (P680+) and the reduced electron acceptor pheophytin a (Pheo a ) following excitation of isolated Photosystem II reaction centers (PS II RC) at 15 K. This PS II RC complex consists of D1, D2, and cytochrome b-559 proteins and was prepared by a procedure which stabilizes the protein complex. Transient absorption difference spectra were measured from 450–840 nm as a function of time with 500fs resolution following 610 nm laser excitation. The formation of P680+-Pheo a is indicated by the appearance of a band due to P680+ at 820 nm and corresponding absorbance changes at 490, 515 and 546 nm due to the formation of Pheo a . The appearance of the 490 nm and 820 nm bands is monoexponenital with =1.4±0.2 ps. Treatment of the PS II RC with sodium dithionite and methyl viologen followed by exposure to laser excitation results in accumulation of Pheo a . Laser excitation of these prereduced RCs at 15 K results in formation of a transient absorption spectrum assigned to 1*P680. We observe wavelength-dependent kinetics for the recovery of the transient bleach of the Qy absorption bands of the pigments in both untreated and pre-reduced PS II RCs at 15K. This result is attributed to an energy transfer process within the PS II RC at low temperature that is not connected with charge separation.Abbreviations PS I Photosystem I - PS II Photosystem II - RC reaction center - P680 primary electron donor in Photosystem II - Chl a chlorophyll a - Pheo a pheophytin a  相似文献   

11.
Loss by recombination of the charge separated state P680+QA limits the performance of Photosystem II (PS II) as a photochemical energy converter. Time constants reported in literature for this process are mostly either near 0.17 ms or near 1.4 ms. The shorter time is found in plant PS II when reduction of P680+ by the secondary electron donor Tyrosine Z cannot occur because YZ is already oxidized. The 1.4 ms recombination is seen in YZ-less mutants of the cyanobacterium Synechocystis. However, the rate of P680+QA recombination that actually competes with the stabilization of the charge separation has not been previously reported. We have measured the kinetics of the flash-induced fluorescence yield changes in the microsecond time domain in Tris-washed spinach chloroplasts. In this way the kinetics and yield of P680+ reduction by YZ were obtained, and the rate of the competing P680+QA recombination could be evaluated. The recombination time was less than 0.5 ms; the best-fitting time constant was 0.1 ms. The presence of YZox slightly decreased the efficiency of excitation trapping but did not seem to accelerate P680+QA recombination. The two P680+QA lifetimes in the literature probably reflect a significant difference between plant and cyanobacterial PS II.  相似文献   

12.
Krisztián Cser 《BBA》2007,1767(3):233-243
The mechanism of charge recombination was studied in Photosystem II by using flash induced chlorophyll fluorescence and thermoluminescence measurements. The experiments were performed in intact cells of the cyanobacterium Synechocystis 6803 in which the redox properties of the primary pheophytin electron acceptor, Phe, the primary electron donor, P680, and the first quinone electron acceptor, QA, were modified. In the D1Gln130Glu or D1His198Ala mutants, which shift the free energy of the primary radical pair to more positive values, charge recombination from the S2QA and S2QB states was accelerated relative to the wild type as shown by the faster decay of chlorophyll fluorescence yield, and the downshifted peak temperature of the thermoluminescence Q and B bands. The opposite effect, i.e. strong stabilization of charge recombination from both the S2QA and S2QB states was observed in the D1Gln130Leu or D1His198Lys mutants, which shift the free energy level of the primary radical pair to more negative values, as shown by the retarded decay of flash induced chlorophyll fluorescence and upshifted thermoluminescence peak temperatures. Importantly, these mutations caused a drastic change in the intensity of thermoluminescence, manifested by 8- and 22-fold increase in the D1Gln130Leu and D1His198Lys mutants, respectively, as well as by a 4- and 2.5-fold decrease in the D1Gln130Glu and D1His198Ala mutants, relative to the wild type, respectively. In the presence of the electron transport inhibitor bromoxynil, which decreases the redox potential of QA/QA relative to that observed in the presence of DCMU, charge recombination from the S2QA state was accelerated in the wild type and all mutant strains. Our data confirm that in PSII the dominant pathway of charge recombination goes through the P680+Phe radical pair. This indirect recombination is branched into radiative and non-radiative pathways, which proceed via repopulation of P680* from 1[P680+Ph] and direct recombination of the 3[P680+Ph] and 1[P680+Ph] radical states, respectively. An additional non-radiative pathway involves direct recombination of P680+QA. The yield of these charge recombination pathways is affected by the free energy gaps between the Photosystem II electron transfer components in a complex way: Increase of ΔG(P680* ↔ P680+Phe) decreases the yield of the indirect radiative pathway (in the 22-0.2% range). On the other hand, increase of ΔG(P680+Phe ↔ P680+QA) increases the yield of the direct pathway (in the 2-50% range) and decreases the yield of the indirect non-radiative pathway (in the 97-37% range).  相似文献   

13.
G. Renger  H.J. Eckert 《BBA》1981,638(1):161-171
The role of the protein matrix embedding the functionally active redox components of Photosystem II reaction centers has been studied by investigating the effects of procedures which modify the structure of proteins. In order to reduce the influence of the electron transport involving secondary donor and acceptor components, Triswashed chloroplasts were used which are completely deprived of their oxygen-evolving capacity. The functional activity was detected via absorption changes, reflecting at 334 and 690 or 834 nm the turnover of the primary plastoquinone acceptor, X320, and of the photochemically active chlorophyll a complex, Chl aII, respectively, and at 520 nm the transient formation of a transmembrane electric potential gradient. Under repetitive flash excitation of Tris-washed chloroplasts it was found that: (a) The relaxation kinetics at 690 nm become significantly accelerated in the presence of external electron donors. (b) Trypsin treatment blocks to a high degree the turnover of Chl aII and X320 unless exogenous acceptors are present, which directly oxidize X320?, such as K3Fe(CN)6. (c) In the presence of K3Fe(CN)6 the recovery kinetics of Chl aII and X320 are retarded markedly by trypsin, followed by a progressive decline in the extent thereof. (d) 2-(3-Chloro-4-trifluoromethyl)anilino-3,5-dinitrothiophene (ANT 2p), known to reduce the lifetime of S2 and S3 in normal chloroplasts, significantly accelerates the recovery of Chl aII. 10 μs kinetics are observed which correspond with the electron-transfer rate from D1 to Chl a+II. ANT 2p simultaneously retards the decay kinetics of X320? and of the electrochromic absorption changes. (e) The kinetic pattern of the electrochromic absorption changes is also affected by the salt content of the suspension. Under dark-adapted conditions, the 10 μs relaxation kinetics of the 834 nm absorption change due to the first flash are hardly affected by mild trypsinization of 5–10 min duration, whereas the amplitude decreases by approx. 30%. The data obtained in Tris-washed chloroplasts could consistently be interpreted as a modification of the back reaction between X320? and Chl a+II which is caused solely by a change in the reactivity of X320 due to trypsin-induced degradation of the native X320-B apoprotein. Furthermore, ADRY agents are inferred to stimulate cyclic electron flow, which leads to reduction of D+1 between the flashes. A simplified scheme is discussed which describes the functional organization of the reaction center complex.  相似文献   

14.
Flash-induced redox reactions in spinach PS II core particles were investigated with absorbance difference spectroscopy in the UV-region and EPR spectroscopy. In the absence of artificial electron acceptors, electron transport was limited to a single turnover. Addition of the electron acceptors DCBQ and ferricyanide restored the characteristic period-four oscillation in the UV absorbance associated with the S-state cycle, but not the period-two oscillation indicative of the alternating appearance and disappearance of a semiquinone at the QB-site. In contrast to PS II membranes, all active centers were in state S1 after dark adaptation. The absorbance increase associated with the S-state transitions on the first two flashes, attributed to the Z+S1ZS2 and Z+S2ZS3 transitions, respectively, had half-times of 95 and 380 s, similar to those reported for PS II membrane fragments. The decrease due to the Z+S3ZS0 transition on the third flash had a half-time of 4.5 ms, as in salt-washed PS II membrane fragments. On the fourth flash a small, unresolved, increase of less than 3 s was observed, which might be due to the Z+S0ZS1 transition. The deactivation of the higher S-states was unusually fast and occurred within a few seconds and so was the oxidation of S0 to S1 in the dark, which had a half-time of 2–3 min. The same lifetime was found for tyrosine D+, which appeared to be formed within milliseconds after the first flash in about 10% inactive centers and after the third and later flashes by active centers in Z+S3.Abbreviations Bis-Tris (bis[2-hydroxyethyl]imino-tris[hydroxymethyl]methane) - D secondary electron donor of PS II - DCBQ 2,5-dichloro-p-benzoquinone - DCMU 3-(3,4dichlorophenyl)-1,1-dimethylurea - PS II Photosystem II - QA secondary electron acceptor of PS II - S0–3 redox state of the oxygen-evolving complex - Z secondary electron donor of PS II  相似文献   

15.
The functional site of ChlZ, an auxiliary electron donor to P680+, was determined by pulsed ELDOR applied to a radical pair of YD and Chlz+ in oriented PS II membranes from spinach. The radical-radical distance was determined to be 29.5 Å and its direction was 50° from the membrane normal, indicating that a chlorophyll on the D2 protein is responsible for the EPR Chlz+ signal. Spin polarized ESEEM (Electronin Spin Echo Envelop Modulation) of a 3Chl and QA radical pair induced by a laser flash was observed in reaction center D1D2Cytb559 complex, in which QA was functionally reconstituted with DBMIB and reduced chemically. QAESEEM showed a characteristic oscillating time profile due to dipolar coupling with 3Chl. By fitting with the dipolar interaction parameters, the distance between 3Chl and QA was determined to be 25.9 Å, indicating that the accessory chlorophyll on the D1 protein is responsible for the 3Chl signal.  相似文献   

16.
The rise time, of Signal IIf and the decay time of P-680+ have been measured kinetically as a function of pH by using EPR. The Photosystem II-enriched preparations which were used as samples were derived from spinach chloroplasts, and they evolved oxygen before Tris washing. The onset kinetics of Signal IIf are in agreement, within experimental error, with the fast component of the decay of an EPR signal attributable to P-680+. The signal IIf rise kinetics also show good agreement with published values of the pH dependence of the decay of P-680+ measured optically (Conjeaud, H. and Mathis, P. (1980) Biochim. Biophys. Acta 590, 353–359). These results are consistent with a model where the species Z (or D1) responsible for Signal IIf is the immediate electron donor to P-680+ in tris-washed Photosystem II fragments.  相似文献   

17.
The temperature dependence of the electric field-induced chlorophyll luminescence in photosystem II was studied in Tris-washed, osmotically swollen spinach chloroplasts (blebs). The system II reaction centers were brought in the state Z+P+-QA -QB - by preillumination and the charge recombination to the state Z+PQAQB - was measured at various temperatures and electrical field strengths. It was found that the activation enthalpy of this back reaction was 0.16 eV in the absence of an electrical field and diminished with increasing field strength. It is argued that this energy is the enthalpy difference between the states IQA - and I-QA and accounts for about half of the free energy difference between these states. The redox state of QB does not influence this free energy difference within 150 s after the photoreduction of QA. The consequences for the interpretation of thermodynamic properties of QA are discussed.Abbreviations DCMU 3(3,4-dichlorophenyl)-1,1-dimethylurea - I intermediary electron acceptor - Mops 3-(N-morpholino)propanesulphonic acid - P (P680) primary electron donor - PS II photosystem II - QA and QB first and second quinone electron acceptors - Tricine N-tris(hydroxymethyl)methylglycine - Tris tris-(hydroxymethyl)aminomethane - Z secondary electron donor Dedicated to Professor L.N.M. Duysens on the occasion of his retirement  相似文献   

18.
In the presence of Cl?, the severity of ammonia-induced inhibition of photosynthetic oxygen evolution is attenuated in spinach thylakoid membranes (Sandusky, P.O. and Yocum, C.F. (1983) FEBS Lett. 162, 339–343). A further examination of this phenomenon using steady-state kinetic analysis suggests that there are two sites of ammonia attack, only one of which is protected by the presence of Cl?. In the case of Tris-induced inhibition of oxygen evolution only the Cl? protected site is evident. In both cases the mechanism of Cl? protection involves the binding of Cl? in competition with the inhibitory amine. Anions (Br? and NO?3) known to reactive oxygen evolution in Cl?-depleted membranes also protect against Tris-induced inhibition, and reactivation of Cl?-depleted membranes by Cl? is competitively inhibited by ammonia. Inactivation of the oxygen-evolving complex by NH2OH is impeded by Cl?, whereas Cl? does not affect the inhibition induced by so-called ADRY reagents. We propose that Cl? functions in the oxygen-evolving complex as a ligand bridging manganese atoms to mediate electron transfer. This model accounts both for the well known Cl? requirement of oxygen evolution, and for the inhibitory effects of amines on this reaction.  相似文献   

19.
The reversible inhibition of Photosystem II by salicylaldoxime was studied in spinach D-10 particles by fluorescence, optical absorption, and electron spin resonance spectroscopy. In the presence of 15 mM salicylaldoxime, the initial fluorescence yield was raised to the level of the maximum fluorescence, indicating efficient charge recombination between reduced pheophytin (Ph) and P680+. In agreement with the rapid (ns) backreaction expected between Ph and P680+, the optical absorption transient at 820 mm was not observed. When the particles were washed free of salicylaldoxime, the optical absorption transient resulting from the rereduction of P680+ was restored to the µs timescale. These results, along with the previously observed inhibition of electron transport reactions and diminution of the 515-nm absorption change in chloroplasts [Golbeck, J.H. (1980) Arch Biochem Biophys 202, 458–466], are consistent with a site of inhibition between Ph and QA in Photosystem II. ESR Signal IIf and Signal Its were abolished in the presence of 25 mM salicylaldoxime, but both signals could be recovered by washing the D-10 particles free of the inhibitor. The loss of Signal Ilf is most likely a consequence of the inhibition between Ph and QA; the rapid charge recombination between Ph and P680+ would preclude electron transfer from an electron donor on the oxidizing side of Photosystem II. The loss of Signal Its may be due to a change in the environment of the donor complex such that the semiquinone radical giving rise to Signal Its interacts with a nearby reductant.Abbreviations D1 electron donor to P680+ in oxygen-inhibited chloroplasts - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - F0 prompt chlorophyll a fluorescence yield - Fi initial chlorophyll a fluorescence yield - Fmax maximum chlorophyll a fluorescence yield - Fvar variable chlorophyll a fluorescence yield - FWHM full width at half maximum - Mes 2-(N-morpholino) ethanesulfonic acid - P680 reaction center chlorophyll a of photosystem II - Ph pheophytin intermediate electron acceptor - QA primary quinone electron acceptor - QB secondary quinone electron acceptor - Tris tris(hydroxymethyl)aminomethane - Z electron donor to P680+  相似文献   

20.
Michael Boska  Kenneth Sauer 《BBA》1984,765(1):84-87
The risetime of EPR signal IIvf (S IIvf) has been measured in oxygen-evolving Photosystem II particles from spinach chloroplasts at pH 6.0. The EPR signal shows an instrument-limited rise upon induction (t12 ? 3 μs). These data are consistent with a model where the species Z responsible for S IIvf is the immediate electron donor to P-680+ in spinach chloroplasts. A new, faster decay component of S IIvf has also been detected in these experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号