首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
In this paper, we propose a general ratio-dependent prey-predator model with disease in predator subject to the strong Allee effect in prey. We obtain the complete dynamics of both models: (a) full model with Allee effect; (b) full model without Allee effect. Model (a) may have more than one interior equilibrium point, but model (b) has only one interior equilibrium point. Numerical results reveal that the coexistence of all the populations at the endemic state is possible for both the models. But for the model with Allee effect, the coexistence can be destroyed by an increased supply of alternative food for the predators. It can also be proved that for the full model with Allee effect, the disease can be suppressed under certain parametric conditions. Also by comparing models (a) and (b), we conclude that Allee effect can create or destroy the interior attractor. Finally, we have studied the disease free-submodel (prey and susceptible predator model) with and without Allee effect. The comparative study between these two submodels leads to the following conclusions: 1) In the presence of Allee effect, the number of interior equilibrium points can change from zero to two whereas the submodel without Allee effect has unique interior equilibrium point; 2) Both with and without Allee effect, initial conditions play an important role on the survival and extinction of prey as well as its corresponding predator; 3) In the presence of Allee effect, bi-stability occurs with stable or periodic coexistence of prey and susceptible predator and the extinction of prey and susceptible predator; 4) Allee effect can generate or destroy the interior equilibrium points.  相似文献   

2.
In this article, we study population dynamics of a general two-species discrete-time competition model where each species suffers from both strong Allee effects and scramble intra-specific competitions. We focus on how the combinations of the scramble intra-specific and inter-specific competition affect the extinction and coexistence of these two competing species where each species is subject to strong Allee effects. We derive sufficient conditions on the extinction, essential-like extinction and coexistence for such models. One of the most interesting findings is that scramble competitions can promote coexistence of these two species at their high densities. This is supported by the outcome of single species models with strong Allee effects. In addition, we apply theoretical results to a symmetric competition model with strong Allee effects induced by predator saturations where we give a completed study of its possible equilibria and attractors. Numerical simulations are performed to support our results.  相似文献   

3.
It is a tenet of ecological theory that two competing consumers cannot stably coexist on a single limiting resource in a homogeneous environment. Many mechanisms and processes have since been evoked and studied, empirically and theoretically, to explain species coexistence and the observed biological diversity. Facilitative interactions clearly have the potential to enhance coexistence. Yet, even though mutual facilitation between species of the same guild is widely documented empirically, the subject has received very little theoretical attention. Here, we study one form of intraguild mutualism in the simplest possibly community module of one resource and two consumers. We incorporate mutualism as enhanced consumption in the presence of the other consumers. We find that intraguild mutualism can (a) significantly enhance coexistence of consumers, (b) induce cyclic dynamics, and (c) give rise to a bi-stability (a ‘joint’ Allee effect) and potentially catastrophic collapse of both consumer species.  相似文献   

4.
Both positive and negative interactions among species are common in communities. Until recently, attention has focused on negative interactions such as competition. However, the importance of positive interactions such as the Allee effect has recently been recognized. We construct a single-patch model that incorporates both an Allee effect and competition between two species. A species that experiences an Allee effect cannot establish in a patch which is already occupied by a competitor unless its density is over a critical value. This effect, when translated into a metapopulation, makes migrants of a species unable to colonize patches where another species has established. This interaction between the Allee effect and inter-specific competition creates and stabilizes spatial segregation of species. Therefore, under circumstances in which competition would preclude local coexistence, the presence of an Allee effect can allow coexistence at a metapopulation scale. Furthermore, we found that a species can resist displacement if stronger competitors experience an Allee effect.  相似文献   

5.
Theories for species coexistence often emphasize niche differentiation and temporal segregation of recruitment to avoid competition. Recent work on mutualism suggested that plant species sharing pollinators provide mutual facilitation when exhibit synchronized reproduction. The facilitation on reproduction may enhance species persistence and coexistence. Theoretical ecologists paid little attention to such indirect mutualistic systems by far. We propose a new model for a two-species system using difference equations. The model focuses on adult plants and assumes no resource competition between these well-established individuals. Our formulas include demographic parameters, such as mortality and recruitment rates, and functions of reproductive facilitation. Both recruitment and facilitation effects reach saturation levels when flower production is at high levels. We conduct mathematical analyses to assess conditions of coexistence. We establish demographical conditions permitting species coexistence. Our analyses suggest a “rescue” effect from a “superior” species to a “weaker” species under strong recruitment enhancement effect when the later is not self-sustainable. The facilitation on rare species may help to overcome Allee effect.  相似文献   

6.
7.
Cooperation between species is often regarded to mean that the increase of each species promotes the growth of the other. The well-known cooperative model is the Lotka–Volterra equations (LVEs). In the LVEs, population densities of species increase infinitely as the cooperation is strong, which is called the divergence problem. Moreover, LVEs never exhibit an Allee effect in the case of obligate cooperation. In order to avoid these problems, several models have been established although most of them are rather complex. In this paper, we consider a cooperative system of two species with bidirectional interactions, in which each species also has negative feedback on the other. Population densities of the species will not increase infinitely because of the limited resource and negative feedback. Then, we focus on an extended lattice model of cooperation, which is deduced from reactions on lattice and has the same form as that of LVEs. In the case of obligate cooperation, the model predicts an Allee effect. Global dynamics of the system exhibit essential features of cooperation and basic mechanisms by which the cooperation can lead to coexistence/extinction of species. Intermediate cooperation is shown to be beneficial in cooperation under certain conditions, while extremely strong cooperation is demonstrated to lead to extinction of one/both species. Numerical simulations confirm and extend our results.  相似文献   

8.
Wang W  Liu H  Li Z  Guo Z  Yang Y 《Bio Systems》2011,105(1):25-33
Investigating the likely success of epidemic invasion is important in the epidemic management and control. In the present study, the invasion of epidemic is initially introduced to a predator-prey system, both species of which are considered to be subject to the Allee effect. Mathematically, the invasion dynamics is described by three nonlinear diffusion-reaction equations and the spatial implicit and explicit models are designed. By means of extensive numerical simulations, the results of spatial implicit model show that the Allee effect has an opposite impact on the invasion criteria and local dynamics when that on the different species. As the intensity of the Allee effect increases, the domain of epidemic invasion reduces and the system dynamics is changed from the stable state to the limit cycle and finally becomes the chaotic state when the susceptible prey with the Allee effect, but the domain expands and the system dynamics is changed from limit cycle to a table point when the predator is subject to the Allee effect. Results from the spatial explicit model show that the strong intensity of the Allee effect can lead to the catastrophic global extinction of all species in the case of that on the susceptible prey. While the predator with the Allee effect, the increased intensity of which makes spatial species reach a stable state. Furthermore, numerical simulations reveal a certain relationship between the invasion speed and spatial patterns.  相似文献   

9.
Frithjof Lutscher  Tzvia Iljon 《Oikos》2013,122(4):621-631
Individuals of different species may interact in many different ways, such as competition, mutualism, or predation, to name but a few. Recent theory and experiments reveal that whether an interaction is beneficial or detrimental to the dynamics of a population often depends on species densities and other environmental factors. Here, we explore how, for suitable densities, facilitation may arise between two competing species with an Allee effect. We consider two different mechanisms for the Allee effect: 1) plant species with obligate insect pollination, and 2) generalist predation. In the first case, a second plant species, competing for nutrients, may have a facilitative effect by attracting more pollinators. In the second case, another potentially competing species may serve to satiate the same generalist predator and thereby have a facilitative effect. We explore three aspects of facilitation in each of the two systems. The focal species may benefit from the presence of a ‘competitor’ if it experiences 1) the removal of the Allee threshold, 2) a lowering of the Allee threshold, or 3) an increase in carrying capacity. We find that the latter two effects occur in both study systems whereas the first only occurs for the generalist predation system but not for the plant‐pollination system. We give precise conditions on when such a facilitative effect can be expected. We also demonstrate several unexpected outcomes of these two‐species interactions with multiple steady states, such as obligate co‐occurence; we draw parallels to the dynamics of species known as ‘ecosystem engineers’, and we discuss implications for conservation and management.  相似文献   

10.
The stability of predator-prey systems subject to the Allee effects   总被引:4,自引:0,他引:4  
In recent years, many theoreticians and experimentalists have concentrated on the processes that affect the stability of predator-prey systems. But few papers have addressed the Allee effect with focus on the their stability. In this paper, we select two classical models describing predator-prey systems and introduce the Allee effects into the dynamics of both the predator and prey populations in these models, respectively. By combining mathematical analysis with numerical simulation, we have shown that the Allee effect may be a destabilizing force in predator-prey systems: the equilibrium point of the system could be changed from stable to unstable or otherwise, the system, even when it is stable, will take much longer time to reach the stable state. We also conclude that the equilibrium of the prey population will be enlarged due to the Allee effect of the predator, but the Allee effects of the prey may decrease the equilibrium value of the predator, or that of both the predator and prey. It should also be pointed out that the impact of the Allee effects of predator and prey due to different mechanisms on different predator-prey systems could also vary.  相似文献   

11.
1.?For social species, the link between individual behaviour and population dynamics is mediated by group-level demography. 2.?Populations of obligate cooperative breeders are structured into social groups, which may be subject to inverse density dependence (Allee effects) that result from a dependence on conspecific helpers, but evidence for population-wide Allee effects is rare. 3.?We use field data from a long-term study of cooperative meerkats (Suricata suricatta; Schreber, 1776) - a species for which local Allee effects are not reflected in population-level dynamics - to empirically model interannual group dynamics. 4.?Using phenomenological population models, modified to incorporate environmental conditions and potential Allee effects, we first investigate overall patterns of group dynamics and find support only for conventional density dependence that increases after years of low rainfall. 5.?To explain the observed patterns, we examine specific demographic rates and assess their contributions to overall group dynamics. Although per-capita meerkat mortality is subject to a component Allee effect, it contributes relatively little to observed variation in group dynamics, and other (conventionally density dependent) demographic rates - especially emigration - govern group dynamics. 6.?Our findings highlight the need to consider demographic processes and density dependence in subpopulations before drawing conclusions about how behaviour affects population processes in socially complex systems.  相似文献   

12.
The nature of and conditions for permanent coexistence of consumers and resources are characterized in a family of models that generalize MacArthur's consumer-resource model. The generalization is of the resource dynamics, which need not be of Lotka-Volterra form but are subject only to certain restrictions loose enough to admit many resource dynamics of biological interest. For any such model, (1) if there is an interior equilibrium, then it is globally attracting, else some boundary equilibrium is globally attracting-thus permanent coexistence is coexistence at a globally attracting equilibrium; (2) there is an interior equilibrium if and only if for any species, the equilibrium approached in the absence of that species and the presence of the others is invasible by that species--thus permanent coexistence is equivalent to mutual invasibility; (3) for resources without direct interactions, the conditions for permanent coexistence of the consumers admit an instructive formulation in terms of regression statistics. The significance and limitations of the models and results are discussed.  相似文献   

13.
Population growth can be positively or negatively dependent on density. Therefore, the distribution pattern of individuals in a patchy environment can greatly affect the growth of each subpopulation and thereby of the metapopulation. When population growth presents positive density‐dependence (Allee effect), the distribution pattern becomes crucial, as small populations have an increased extinction risk. The way in which individuals move between patches largely determines the distribution pattern and thereby the population dynamics. Collective movement, in particular, should be expected to increase the potential number of colonisers and therefore the probability of colonising success. Here, we use mathematical modelling (differential equations and stochastic simulations) to study how collective movement can influence metapopulation dynamics when Allee effects are at stake. The models are inspired by the two‐spotted spider mite, a phytophagous pest of recognised agricultural importance. This sub‐social mite displays trail laying/following behaviour that can provoke collective movement. Moreover, experimental evidence suggests that it is subject to Allee effects. In the first part of this study we present a single‐species population growth model incorporating Allee effects, and study its properties. In the second part, this growth model is integrated into a larger simulation model consisting of a set of interconnected patches, in which the individuals move from one patch to the other either independently or collectively. Our results show that collective movement is more advantageous than independent dispersal only when Allee effects are present and strong enough. Furthermore they provide a theoretical framework that allows the quantification of the interplay between Allee effects and collective movement.  相似文献   

14.
If a healthy stable host population at the disease-free equilibrium is subject to the Allee effect, can a small number of infected individuals with a fatal disease cause the host population to go extinct? That is, does the Allee effect matter at high densities? To answer this question, we use a susceptible-infected epidemic model to obtain model parameters that lead to host population persistence (with or without infected individuals) and to host extinction. We prove that the presence of an Allee effect in host demographics matters even at large population densities. We show that a small perturbation to the disease-free equilibrium can eventually lead to host population extinction. In addition, we prove that additional deaths due to a fatal infectious disease effectively increase the Allee threshold of the host population demographics.  相似文献   

15.
If a healthy stable host population at the disease-free equilibrium is subject to the Allee effect, can a small number of infected individuals with a fatal disease cause the host population to go extinct? That is, does the Allee effect matter at high densities? To answer this question, we use a susceptible–infected epidemic model to obtain model parameters that lead to host population persistence (with or without infected individuals) and to host extinction. We prove that the presence of an Allee effect in host demographics matters even at large population densities. We show that a small perturbation to the disease-free equilibrium can eventually lead to host population extinction. In addition, we prove that additional deaths due to a fatal infectious disease effectively increase the Allee threshold of the host population demographics.  相似文献   

16.
The main objective of this work is to present a general framework for the notion of the strong Allee effect in population models, including competition, mutualistic, and predator–prey models. The study is restricted to the strong Allee effect caused by an inter-specific interaction. The main feature of the strong Allee effect is that the extinction equilibrium is an attractor. We show how a ‘phase space core’ of three or four equilibria is sufficient to describe the essential dynamics of the interaction between two species that are prone to the Allee effect. We will introduce the notion of semistability in planar systems. Finally, we show how the presence of semistable equilibria increases the number of possible Allee effect cores.  相似文献   

17.
This paper considers the coevolution of phenotypic traits in a community comprising two competitive species subject to strong Allee effects. Firstly, we investigate the ecological and evolutionary conditions that allow for continuously stable strategy under symmetric competition. Secondly, we find that evolutionary suicide is impossible when the two species undergo symmetric competition, however, evolutionary suicide can occur in an asymmetric competition model with strong Allee effects. Thirdly, it is found that evolutionary bistability is a likely outcome of the process under both symmetric and asymmetric competitions, which depends on the properties of symmetric and asymmetric competitions. Fourthly, under asymmetric competition, we find that evolutionary cycle is a likely outcome of the process, which depends on the properties of both intraspecific and interspecific competition. When interspecific and intraspecific asymmetries vary continuously, we also find that the evolutionary dynamics may admit a stable equilibrium and two limit cycles or two stable equilibria separated by an unstable limit cycle or a stable equilibrium and a stable limit cycle.  相似文献   

18.
In ecological communities, numerous species coexist and affect each others’ population levels via various types of interspecific interactions. Previous ecological theory explaining multispecies coexistence tended to focus on a single interaction type, such as antagonism, competition, or mutualism, and its consequences on population dynamics. Hence, it remains unclear what, if any, contribution multiple coexisting interaction types have on the multispecies coexistence. Here, we show that the coexistence of multiple interaction types can be essential for multispecies coexistence. We present a simple model in which the exploiter and mutualist adaptively switch between two competing resource species. An adaptive mutualist, which favors the more abundant species, provides a mechanism of majority-advantage and, thus, potentially inhibits the coexistence of resource species. In the absence of an exploiter, an adaptive mutualist leads to competitive exclusion at the resource species level. However, the coexistence of an adaptive exploiter and a mutualist allows the coexistence of all species in the community, because the mutualist-mediated “winner” tends to be suppressed by the adaptive exploiter. The mutualist indirectly increases the abundance of the exploiter through mutualistic interactions, thereby indirectly supporting this coexistence mechanism. In fact, coexistence may occur even if the exploiter or mutualist alone cannot mediate the coexistence of two resources. We conclude that the coexistence of mutualism and antagonism may be the key to the persistence of the four-species module in the presence of adaptive switching.  相似文献   

19.
Mutualisms are ubiquitous in nature, provide important ecosystem services, and involve many species of interest for conservation. Theoretical progress on the population dynamics of mutualistic interactions, however, comparatively lagged behind that of trophic and competitive interactions, leading to the impression that ecologists still lack a generalized framework to investigate the population dynamics of mutualisms. Yet, over the last 90 years, abundant theoretical work has accumulated, ranging from abstract to detailed. Here, we review and synthesize historical models of two‐species mutualisms. We find that population dynamics of mutualisms are qualitatively robust across derivations, including levels of detail, types of benefit, and inspiring systems. Specifically, mutualisms tend to exhibit stable coexistence at high density and destabilizing thresholds at low density. These dynamics emerge when benefits of mutualism saturate, whether due to intrinsic or extrinsic density dependence in intraspecific processes, interspecific processes, or both. We distinguish between thresholds resulting from Allee effects, low partner density, and high partner density, and their mathematical and conceptual causes. Our synthesis suggests that there exists a robust population dynamic theory of mutualism that can make general predictions.  相似文献   

20.
The main objective of this work is to present a general framework for the notion of the strong Allee effect in population models, including competition, mutualistic, and predator-prey models. The study is restricted to the strong Allee effect caused by an inter-specific interaction. The main feature of the strong Allee effect is that the extinction equilibrium is an attractor. We show how a 'phase space core' of three or four equilibria is sufficient to describe the essential dynamics of the interaction between two species that are prone to the Allee effect. We will introduce the notion of semistability in planar systems. Finally, we show how the presence of semistable equilibria increases the number of possible Allee effect cores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号