首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endophytes are micro‐organisms including bacteria and fungi that survive within healthy plant tissues and promote plant growth under stress. This review focuses on the potential of endophytic microbes that induce abiotic stress tolerance in plants. How endophytes promote plant growth under stressful conditions, like drought and heat, high salinity and poor nutrient availability will be discussed. The molecular mechanisms for increasing stress tolerance in plants by endophytes include induction of plant stress genes as well as biomolecules like reactive oxygen species scavengers. This review may help in the development of biotechnological applications of endophytic microbes in plant growth promotion and crop improvement under abiotic stress conditions.

Significance and Impact of the Study

Increasing human populations demand more crop yield for food security while crop production is adversely affected by abiotic stresses like drought, salinity and high temperature. Development of stress tolerance in plants is a strategy to cope with the negative effects of adverse environmental conditions. Endophytes are well recognized for plant growth promotion and production of natural compounds. The property of endophytes to induce stress tolerance in plants can be applied to increase crop yields. With this review, we intend to promote application of endophytes in biotechnology and genetic engineering for the development of stress‐tolerant plants.  相似文献   

2.
Agricultural productivity is majorly impacted due to various abiotic stresses, particularly salinity and drought. Halophytes serve as an excellent resource for identifying and developing new crop systems, as these grow very luxuriously in very high saline soils. Understanding salinity stress tolerance mechanisms in such plants is an important step towards generating crop varieties that can cope with environmental stresses. Use of modern tools of ‘omics’ analyses and small RNA sequencing has helped to gain insights into the complex plant stress responses. Salinity tolerance being a multigenic trait requires a combination of strategies and techniques to successfully develop improved crops varieties. Many transgenic crops are being developed through genetic transformation. Besides marker-assisted breeding/QTL approaches are also being used to improve abiotic stress tolerance. In this review, we focus on the recent developments in the utilization of halophytes as a source of genes for genetic improvement in abiotic stress tolerance of crops.  相似文献   

3.
4.
5.
6.
植物中DREBs类转录因子及其在非生物胁迫中的作用   总被引:3,自引:0,他引:3  
张梅  刘炜  毕玉平 《遗传》2009,31(3):236-244
低温、干旱、高盐等非生物胁迫能够严重影响植物的生长及作物的产量。最近发现了许多调控多种与逆境相关基因表达的转录因子, 其中DREBs类转录因子能够通过与含有DRE/CRT顺式作用元件的抗逆相关基因启动子区相互作用, 进而调控一系列抗逆基因的表达, 使植物品质得到综合改良从而提高植物对非生物胁迫耐受力。文章通过对DREBs的结构、表达调控、作用方式及机理进行总结, 并结合其在植物胁迫信号通路中的作用以及提高转基因植株胁迫耐受性的最新研究成果加以综述, 并对其在农业生产中的应用前景进行展望。  相似文献   

7.
Gene Expression Profiling of Plants under Salt Stress   总被引:1,自引:0,他引:1  
  相似文献   

8.
9.
Normal growth and development of plants is greatly dependent on the capacity to overcome environmental stresses. Environmental stress conditions like high salinity, drought, high incident light and low or high temperature cause major crop losses worldwide. A common denominator in all these adverse conditions is the production of reactive oxygen species (ROS) within different cellular compartments of the plant cell. Plants have developed robust mechanisms including enzymatic or nonenzymatic scavenging pathways to counter the deleterious effects of ROS production. There are a number of general reviews on oxidative stress in plants and few on the role of ROS scavengers during stress conditions. Here we review the regulation of antioxidant enzymes during salt stress in halophytes, especially mangroves. We conclude that (i) antioxidant enzymes protect halophytes from deleterious ROS production during salt stress, and (ii) genetic information from mangroves and other halophytes would be helpful in defining the roles of individual isoforms. This information would be critical in using the appropriate genes for oxidative stress defence for genetic engineering of enhanced stress tolerance in crop systems.  相似文献   

10.
耐盐转基因植物研究进展   总被引:36,自引:0,他引:36  
高盐是限制作物生长、发育和产量的最严重的非生物胁迫之一。长期以来,改善作物的耐盐性一直是一个伟大的目标。然而,由于耐盐反应是一个极为复杂的过程,过去,通过传统的育种和遗传工程取得的成功有限。近十年来,由于分子生物学的发展,发现了一些与耐盐相关的新基因,对于这些基因的表达方式及其在耐盐反应中的作用已逐步得到了解,这为转基因工程提供了新的材料。通过控制耐盐相关基因在植物体内的表达,已获得了一些提高耐盐性的转基因植物,展示了诱人的前景,但该领域研究仍然存在许多困难和问题,文章重点讨论耐盐转基因植物的进展。  相似文献   

11.
12.
In the recent times, plants are facing certain types of environmental stresses, which give rise to formation of reactive oxygen species (ROS) such as hydroxyl radicals, hydrogen peroxides, superoxide anions and so on. These are required by the plants at low concentrations for signal transduction and at high concentrations, they repress plant root growth. Apart from the ROS activities, hydrogen sulfide (H2S) and nitric oxide (NO) have major contributions in regulating growth and developmental processes in plants, as they also play key roles as signaling molecules and act as chief plant immune defense mechanisms against various biotic as well as abiotic stresses. H2S and NO are the two pivotal gaseous messengers involved in growth, germination and improved tolerance in plants under stressed and non-stress conditions. H2S and NO mediate cell signaling in plants as a response to several abiotic stresses like temperature, heavy metal exposure, water and salinity. They alter gene expression levels to induce the synthesis of antioxidant enzymes, osmolytes and also trigger their interactions with each other. However, research has been limited to only cross adaptations and signal transductions. Understanding the change and mechanism of H2S and NO mediated cell signaling will broaden our knowledge on the various biochemical changes that occur in plant cells related to different stresses. A clear understanding of these molecules in various environmental stresses would help to confer biotechnological applications to protect plants against abiotic stresses and to improve crop productivity.  相似文献   

13.
Exogenous application of different plant growth regulators is a well-recognized strategy to alleviate stress-induced adverse effects on different crop plants by regulating a variety of physiobiochemical processes such as photosynthesis, chlorophyll biosynthesis, nutrient uptake, antioxidant metabolism, and protein synthesis, which are directly or indirectly involved in the mechanism of stress tolerance. Of various environmental factors, salinity, drought, and extreme temperature (low or high) considerably diminish plant growth and yield by modulating endogenous levels as well as signaling pathways of plant hormones. Of various plant hormones/regulators, a potential plant growth regulator, 5-aminolevulinic acid (ALA), is known to be effective in counteracting the injurious effects of various abiotic stresses in plants. Until now the mechanisms behind ALA regulation of growth under stress have not been fully elucidated. It is also not yet clear how far growth and yield in different crops can be promoted by exogenous application of ALA and whether this ALA-induced growth and yield promotion is cost-effective. Thus, in this review we discuss at length the effects of ALA in regulating growth and development in plants under a variety of abiotic stress conditions, including salinity, drought, and temperature stress. Furthermore, advances in the functional and regulatory interactions of this plant growth regulator with plant stress tolerance, as well as the effective mode of exogenous application of ALA in inducing stress tolerance in plants are also comprehensively discussed in this review. In the future, overaccumulation of ALA in plants through manipulation of gene(s) could enhance plant stress tolerance. Thus, genetic manipulation of plants with the goal of attaining increased synthesis/accumulation of ALA and hence improved stress tolerance under stress conditions is an important area for research.  相似文献   

14.
Abiotic environmental stresses can give rise to morphological, biochemical and molecular changes that negatively affect plant growth and productivity. Among these stresses, soil salinity is the major threat. To deal and control effects of high salinity on plants, it is important to understand their responses to salt stress that disturbs the homeostatic equilibrium at cellular and molecular levels. In this regard halophytes (salt tolerant plants) can provide superior models for the study of salt stress defense parameters compared to salt sensitive species (glycophytes). Halophytes use highly developed, complex systems to tolerate salinity by maintaining a low cytosolic Na+/K+ ratio, sequestration of Na+ into vacuoles that then provides the osmotic potential sustaining water influx. Under low intensity stress conditions that moderately and/or transiently affect ion imbalance, the set of responses all plants initiate will be mostly to engage measures that assure ion balance. High salinity, especially over a prolonged time period, will challenge plant survival, which then requires different strategies that employ a variety of mechanisms. Plasticity and connectivity of these diverse mechanisms is engrained in species- and family-specific evolutionary history and their genetic complexity. Highlighting differences in the genetic and biochemical makeup between glycophytes and halophytes allows for comparisons between their approaches towards high salinity. This review provides a brief overview about different strategies and mechanism used by plants to avoid or confine adverse effects of high salinity.  相似文献   

15.
Abiotic stresses, especially salinity and drought, are the primary causes of crop loss worldwide. Plant adaptation to environmental stresses is dependent upon the activation of cascades of molecular networks involved in stress perception, signal transduction, and the expression of specific stress-related genes and metabolites. Consequently, engineering genes that protect and maintain the function and structure of cellular components can enhance tolerance to stress. Our limited knowledge of stress-associated metabolism remains a major gap in our understanding; therefore, comprehensive profiling of stress-associated metabolites is most relevant to the successful molecular breeding of stress-tolerant crop plants. Unraveling additional stress-associated gene resources, from both crop plants and highly salt- and drought-tolerant model plants, will enable future molecular dissection of salt-tolerance mechanisms in important crop plants.  相似文献   

16.
Cereals are grown in almost every region of the world and are exposed to a variety of environmental stresses that severely affect their growth and grain yield. Of various abiotic stresses, salinity is one of the more significant threats to cereal crops. To ensure food security, there is a need to adopt strategies to overcome this specific threat. Undoubtedly, plant scientists have been exploiting a variety of approaches to achieve enhanced crop productivity on salt affected soils. Of the various biotic approaches, conventional breeding, marker-assisted selection and genetic engineering to develop salt-tolerant lines/cultivars of cereals all seem plausible. Some success stories have been reported for improvement in salt tolerance of wheat and rice, but are scarce for other cereals. A number of barriers to the development of salt-tolerant cultivars/lines have been identified and include a lack of knowledge about the genetics of crops, their physiological and biochemical behavior, wide variation in environmental conditions, and the complex polygenic nature of the salt tolerance character. This review focuses on how improvements have been made in salt tolerance in cereals through different biotic means, such as conventional breeding, marker assisted selection and genetic engineering.  相似文献   

17.
Recent developments in understanding salinity tolerance   总被引:1,自引:0,他引:1  
Salt stress imposes a major environmental threat to agriculture and its adverse impacts are getting more serious problem in regions where saline water is used for irrigation. Therefore, the efforts to increase salt tolerance of crop plants bear remarkable importance to supply sustainable agriculture on marginal lands and could potentially improve crop yield overall. Acclimation of plants to salinized conditions depend upon activation of cascades of molecular networks involved in stress sensing, signal transduction and the expression of specific stress-related genes and metabolites. Adaptational processes are elaborate and more than one gene might be expressed during the acclimation process. Isolation of Salt Overly Sensitive (SOS) genes by sos mutants shed us light on the relationship between ion homeostasis and salinity tolerance. The essential role of antioxidative system to maintain a balance between the overproduction of Reactive Oxygen Species (ROS) and their scavenging to keep them at signaling level for reinstating metabolic homeostasis has already been established. Compatible osmolytes synthesized to maintain equal water potential with the environment under salinity conditions implements another strategy to develop resistance against salinity. With the growing body of information about molecular markers, genomics and post-genomics and thus increasing understanding of signaling pathways and mechanisms that contributes to plant stress responses, significant breakthroughs have been emerged to figure out the mechanism and control of salinity tolerance at molecular level. Many transgenic works were carried out to produce transgenic plants to develop enhanced tolerance to salt stress. However, a few of them seem succeeded to be implemented in salt-affected marginal lands efficiently. This minireview focuses on the recent developments in salinity tolerance research aiming to contribute sustainable food production under salt stress in the face of a globally warming ecosystem.  相似文献   

18.
The hot pepper xyloglucan endo-trans-gluco-sylase/hydrolase (CaXTH3) gene that was inducible by a broad spectrum of abiotic stresses in hot pepper has been reported to enhance tolerance to drought and high salinity in transgenic Arabidopsis. To assess whether CaXTH3 is a practically useful target gene for improving the stress tolerance of crop plants, we ectopically over-expressed the full-length CaXTH3 cDNA in tomato (Solanum lycopersicum cv. Dotaerang) and found that the 35S:CaXTH3 transgenic tomato plants exhibited a markedly increased tolerance to salt and drought stresses. Transgenic tomato plants exposed to a salt stress of 100?mM NaCl retained the chlorophyll in their leaves and showed normal root elongation. They also remained green and unwithered following exposure to 2?weeks of dehydration. A high proportion of stomatal closures in 35S:CaXTH3 was likely to be conferred by increased cell-wall remodeling activity of CaXTH3 in guard cell, which may reduce transpirational water loss in response to dehydration stress. Despite this increased stress tolerance, the transgenic tomato plants showed no detectable phenotype defects, such as abnormal morphology and growth retardation, under normal growth conditions. These results raise the possibility that CaXTH3 gene is appropriate for application in genetic engineering strategies aimed at improving abiotic stress tolerance in agriculturally and economically valuable crop plants.  相似文献   

19.
There is large area of saline abandoned and low-yielding land distributed in coastal zone in the world. Soil salinity which inhibits plant growth and decreases crop yield is a serious and chronic problem for agricultural production. Improving plant salt tolerance is a feasible way to solve this problem. Plant physiological and biochemical responses under salinity stress become a hot issue at present, because it can provide insights into how plants may be modified to become more tolerant. It is generally known that the negative effects of soil salinity on plants are ascribed to ion toxicity, oxidative stress and osmotic stress, and great progress has been made in the study on molecular and physiological mechanisms of plant salinity tolerance in recent years. However, the present knowledge is not easily applied in the agronomy research under field environment. In this review, we simplified the physiological adaptive mechanisms in plants grown in saline soil and put forward a practical procedure for discerning physiological status and responses. In our opinion, this procedure consists of two steps. First, negative effects of salt stress are evaluated by the changes in biomass, crop yield and photosynthesis. Second, the underlying reasons are analyzed from osmotic regulation, antioxidant response and ion homeostasis. Photosynthesis is a good indicator of the harmful effects of saline soil on plants because of its close relation with crop yield and high sensitivity to environmental stress. Particularly, chlorophyll a fluorescence transient has been accepted as a reliable, sensitive and convenient tool in photosynthesis research in recent years, and it can facilitate and enrich photosynthetic research under field environment.  相似文献   

20.
The use of soil and irrigation water with a high content of soluble salts is a major limiting factor for crop productivity in the semi-arid areas of the world. While important physiological insights about the mechanisms of salt tolerance in plants have been gained, the transfer of such knowledge into crop improvement has been limited. The identification and exploitation of soil microorganisms (especially rhizosphere bacteria and mycorrhizal fungi) that interact with plants by alleviating stress opens new alternatives for a pyramiding strategy against salinity, as well as new approaches to discover new mechanisms involved in stress tolerance. Although these mechanisms are not always well understood, beneficial physiological effects include improved nutrient and water uptake, growth promotion, and alteration of plant hormonal status and metabolism. This review aims to evaluate the beneficial effects of soil biota on the plant response to saline stress, with special reference to phytohormonal signalling mechanisms that interact with key physiological processes to improve plant tolerance to the osmotic and toxic components of salinity. Improved plant nutrition is a quite general beneficial effect and may contribute to the maintenance of homeostasis of toxic ions under saline stress. Furthermore, alteration of crop hormonal status to decrease evolution of the growth-retarding and senescence-inducing hormone ethylene (or its precursor 1-aminocyclopropane-1-carboxylic acid), or to maintain source-sink relations, photosynthesis, and biomass production and allocation (by altering indole-3-acetic acid and cytokinin biosynthesis) seem to be promising target processes for soil biota-improved crop salt tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号