首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
文章研究的是一个具有时滞的媒介传播流行病模型.假定长期的发病率是双线性大规模行动的方式,确定了疾病是否流行的阈值R_0.当R_0≤1时,得到无病平衡点是全局稳定的,即疾病消失;当R_0〉1时,得到地方病平衡点.在具有时滞的微分模型中,时滞与载体转变成传染源的孵化期有关。我们研究了时滞对平衡点稳定性的影响,研究表明,在从寄生源到载体的传播过程中,时滞可以破坏动力系统并且得到了Hopt分支的周期解.  相似文献   

2.
We consider a system of delay differential equations modeling the predator-prey ecoepidemic dynamics with a transmissible disease in the predator population. The time lag in the delay terms represents the predator gestation period. We analyze essential mathematical features of the proposed model such as local and global stability and in addition study the bifurcations arising in some selected situations. Threshold values for a few parameters determining the feasibility and stability conditions of some equilibria are discovered and similarly a threshold is identified for the disease to die out. The parameter thresholds under which the system admits a Hopf bifurcation are investigated both in the presence of zero and non-zero time lag. Numerical simulations support our theoretical analysis.  相似文献   

3.
Winner-take-all selection in a neural system with delayed feedback   总被引:2,自引:2,他引:0  
We consider the effects of temporal delay in a neural feedback system with excitation and inhibition. The topology of our model system reflects the anatomy of the avian isthmic circuitry, a feedback structure found in all classes of vertebrates. We show that the system is capable of performing a 'winner-take-all' selection rule for certain combinations of excitatory and inhibitory feedback. In particular, we show that when the time delays are sufficiently large a system with local inhibition and global excitation can function as a 'winner-take-all' network and exhibit oscillatory dynamics. We demonstrate how the origin of the oscillations can be attributed to the finite delays through a linear stability analysis.  相似文献   

4.
We model the metabolism and behaviour of a developing cancer tumour in the context of its microenvironment, with the aim of elucidating the consequences of altered energy metabolism. Of particular interest is the Warburg Effect, a widespread preference in tumours for cytosolic glycolysis rather than oxidative phosphorylation for glucose breakdown, as yet incompletely understood. We examine a candidate explanation for the prevalence of the Warburg Effect in tumours, the acid-mediated invasion hypothesis, by generalising a canonical non-linear reaction–diffusion model of acid-mediated tumour invasion to consider additional biological features of potential importance. We apply both numerical methods and a non-standard asymptotic analysis in a travelling wave framework to obtain an explicit understanding of the range of tumour behaviours produced by the model and how fundamental parameters govern the speed and shape of invading tumour waves. Comparison with conclusions drawn under the original system—a special case of our generalised system—allows us to comment on the structural stability and predictive power of the modelling framework.  相似文献   

5.
Mathematical models have made considerable contributions to our understanding of HIV dynamics. Introducing time delays to HIV models usually brings challenges to both mathematical analysis of the models and comparison of model predictions with patient data. In this paper, we incorporate two delays, one the time needed for infected cells to produce virions after viral entry and the other the time needed for the adaptive immune response to emerge to control viral replication, into an HIV-1 model. We begin model analysis with proving the positivity and boundedness of the solutions, local stability of the infection-free and infected steady states, and uniform persistence of the system. By developing a few Lyapunov functionals, we obtain conditions ensuring global stability of the steady states. We also fit the model including two delays to viral load data from 10 patients during primary HIV-1 infection and estimate parameter values. Although the delay model provides better fits to patient data (achieving a smaller error between data and modeling prediction) than the one without delays, we could not determine which one is better from the statistical standpoint. This highlights the need of more data sets for model verification and selection when we incorporate time delays into mathematical models to study virus dynamics.  相似文献   

6.
陈斯养  靳宝 《生态学报》2015,35(7):2339-2348
讨论了具时滞与分段常数变量的捕食-食饵生态模型的稳定性及Neimark-Sacker分支;通过计算得到连续模型对应的差分模型,基于特征值理论和Schur-Cohn判据得到正平衡态局部渐进稳定的充分条件;以食饵的内禀增长率为分支参数,运用分支理论和中心流形定理分析了Neimark-Sacker分支的存在性与稳定性条件;通过举例和数值模拟验证了理论的正确性。  相似文献   

7.
In this paper, a chemostat model with Beddington-DeAnglis uptake function and impulsive state feedback control is considered. We obtain sufficient conditions of the global asymptotical stability of the system without impulsive state feedback control. We also obtain that the system with impulsive state feedback control has periodic solution of order one. Sufficient conditions for existence and stability of periodic solution of order one are given. In some cases, it is possible that the system exists periodic solution of order two. Our results show that the control measure is effective and reliable.  相似文献   

8.
In this paper, the existence, uniqueness and exponential stability of almost periodic solutions for a mathematical model of tumour growth are studied. The establishment of the model is based on the reaction–diffusion dynamics and mass conservation law and is considered with a delay in the cell proliferation process. Using a fixed-point theorem in cones, the existence and uniqueness of almost periodic solutions for different parameter values of the model is proved. Moreover, by the Gronwall inequality, sufficient conditions are established for the exponential stability of the unique almost periodic solution. Results are illustrated by computer simulations.  相似文献   

9.
We consider the stability properties of the positive equilibrium of a stochastic model for bacteriophage infection with discrete time delay. Conditions for mean-square stability of the trivial solution of the linearized system around the equilibrium are given by the construction of suitable Lyapunov functionals. The numerical simulations of the strong solutions of the arising stochastic delay differential system suggest that, even for the original non-linear model, the longer the incubation time the more the phage and bacteria populations can coexist on a stable equilibrium in a noisy environment for very long time.  相似文献   

10.
马庆波  向华 《生物信息学》2009,7(4):326-329
HBV(HePatitis B virus)是一种具有严重传染性的肝炎病毒,迄今为止,人们对它的免疫和慢性化的机制等方面还不甚了解。本文基于相关的病理知识,对应的建立了具有时滞的微分方程数学模型,系统地探讨了肝炎B病毒与宿主细胞之间的关系,利用Lyapunov函数方法研究了病毒动力学模型感染平衡点的局部稳定性和未感染平衡点全局稳定性,并利用数学模拟验证了理论分析。结果表明时滞的存在不会影响到感染平衡点的局部稳定性,但能影响平衡点到达的时间跨度,对于药物治疗的疗程和治疗时机的确定有参考意义。  相似文献   

11.
Dose and time intensifications of chemotherapy improved the outcome of lymphoma therapy. However, recent study results show that too intense therapies can result in inferior tumour control. We hypothesise that the immune system plays a key role in controlling residual tumour cells after treatment. More intense therapies result in a stronger depletion of immune cells allowing an early re-growth of the tumour. We propose a differential equations model of the dynamics and interactions of tumour and immune cells under chemotherapy. Major model features are an exponential tumour growth, a modulation of the production of effector cells by the presence of the tumour (immunogenicity), and mutual destruction of tumour and immune cells. Chemotherapy causes damage to both, immune and tumour cells. Growth rate, chemosensitivity, immunogenicity, and initial size of the tumour are assumed to be patient-specific, resulting in heterogeneity regarding therapy outcome. Maximum-entropy distributions of these parameters were estimated on the basis of clinical survival data. The resulting model can explain the outcome of five different chemotherapeutic regimens and corresponding hazard-ratios. We conclude that our model explains observed paradox effects in lymphoma therapy by the simple assumption of a relevant anti-tumour effect of the immune system. Heterogeneity of therapy outcomes can be explained by distributions of model parameters, which can be estimated on the basis of clinical survival data. We demonstrate how the model can be used to make predictions regarding yet untested therapy options.  相似文献   

12.
A number of mathematical models of the human respiratory control system have been developed since 1940 to study a wide range of features of this complex system. Among them, periodic breathing (including Cheyne-Stokes respiration and apneustic breathing) is a collection of regular but involuntary breathing patterns that have important medical implications. The hypothesis that periodic breathing is the result of delay in the feedback signals to the respiratory control system has been studied since the work of Grodins et al. in the early 1950's [12]. The purpose of this paper is to study the stability characteristics of a feedback control system of five differential equations with delays in both the state and control variables presented by Khoo et al. [17] in 1991 for modeling human respiration. The paper is divided in two parts. Part I studies a simplified mathematical model of two nonlinear state equations modeling arterial partial pressures of O2 and CO2 and a peripheral controller. Analysis was done on this model to illuminate the effect of delay on the stability. It shows that delay dependent stability is affected by the controller gain, compartmental volumes and the manner in which changes in the ventilation rate is produced (i.e., by deeper breathing or faster breathing). In addition, numerical simulations were performed to validate analytical results. Part II extends the model in Part I to include both peripheral and central controllers. This, however, necessitates the introduction of a third state equation modeling CO2 levels in the brain. In addition to analytical studies on delay dependent stability, it shows that the decreased cardiac output (and hence increased delay) resulting from the congestive heart condition can induce instability at certain control gain levels. These analytical results were also confirmed by numerical simulations.  相似文献   

13.
We develop a mathematical model for the initial growth of a tumour after a mutation in which either an oncogene is expressed or an anti-oncogene (i.e. tumour suppressor gene) is lost. Our model incorporates mitotic control by several biochemicals, with quite different regulatory characteristics, and we consider mutations affecting the cellular response to these control mechanisms. Our mathematical representation of these mutations reflects the current understanding of the roles of oncogenes and anti-oncogenes in controlling cell proliferation. Numerical solutions of our model, for biologically relevant parameter values, show that the different types of mutations have quite different effects. Mutations affecting the cell response to chemical regulators, or resulting in autonomy from such regulators, cause an advancing wave of tumour cells and a receding wave of normal cells. By contrast, mutations affecting the production of a mitotic regulator cause a slow localized increase in the numbers of both normal and mutant cells. We extend our model to investigate the possible effects of an immune response to cancer by including a first order removal of mutant cells. When this removal rate exceeds a critical value, the immune system can suppress tumour growth; we derive an expression for this critical value as a function of the parameters characterizing the mutation. Our results suggest that the effectiveness of the immune response after an oncogenic mutation depends crucially on the way in which the mutation affects the biochemical control of cell division.  相似文献   

14.
This paper considers a model of the human cardiovascular-respiratory control system with one and two transport delays in the state equations describing the respiratory system. The effectiveness of the control of the ventilation rate is influenced by such transport delays because blood gases must be transported a physical distance from the lungs to the sensory sites where these gases are measured. The short term cardiovascular control system does not involve such transport delays although delays do arise in other contexts such as the baroreflex loop (see [46]) for example. This baroreflex delay is not considered here. The interaction between heart rate, blood pressure, cardiac output, and blood vessel resistance is quite complex and given the limited knowledge available of this interaction, we will model the cardiovascular control mechanism via an optimal control derived from control theory. This control will be stabilizing and is a reasonable approach based on mathematical considerations as well as being further motivated by the observation that many physiologists cite optimization as a potential influence in the evolution of biological systems (see, e.g., Kenner [29] or Swan [62]). In this paper we adapt a model, previously considered (Timischl [63] and Timischl et al. [64]), to include the effects of one and two transport delays. We will first implement an optimal control for the combined cardiovascular-respiratory model with one state space delay. We will then consider the effects of a second delay in the state space by modeling the respiratory control via an empirical formula with delay while the the complex relationships in the cardiovascular control will still be modeled by optimal control. This second transport delay associated with the sensory system of the respiratory control plays an important role in respiratory stability. As an application of this model we will consider congestive heart failure where this transport delay is larger than normal and the transition from the quiet awake state to stage 4 (NREM) sleep. The model can be used to study the interaction between cardiovascular and respiratory function in various situations as well as to consider the influence of optimal function in physiological control system performance.Supported by FWF (Austria) under grant F310 as a subproject of the Special Research Center F003 Optimization and ControlMathematics Subject Classification (2000): 92C30, 49J15  相似文献   

15.
Rhythmic, synchronous firing of groups of neurons is associated with behaviorally relevant states, and it is thus of interest to understand the mechanisms by which synchronization may be achieved. In hippocampal slice preparations, networks of excitatory and inhibitory neurons have been seen to synchronize when strong stimulation is applied at separated sites between which any coupling must be subject to a significant axonal delay. We extend previous work on synchronization in a model system based on the network architecture of these hippocampal slices. Our new analysis addresses the effects of heterogeneous populations and noisy inputs on the stability of synchronous solutions in the system. We find that, with experimentally motivated constraints on the coupling strength, sufficiently large heterogeneity in the input currents renders synchrony unstable. The addition of noise, however, restores stable near-synchrony. We analytically reduce the high-dimensional biophysical equations for the full population to a simple three-dimensional map, and show that the map's stability properties correctly predict both the loss of stability and the restabilizing effect of the noise.  相似文献   

16.
研究一类具有饱和感染率、治愈率和细胞内时滞的HIV病理模型.首先分析平衡态的存在性与稳定性,然后给出染病平衡态对于任意时滞保持稳定(不稳定)的充分条件,并利用Nyquist准则度量染病平衡点保持稳定的时滞长度.  相似文献   

17.
We consider a closed Nutrient-Phytoplankton-Zooplankton (NPZ) model that allows for a delay in the nutrient recycling. A delay-dependent conservation law allows us to quantify the total biomass in the system. With this, we can investigate how a planktonic ecosystem is affected by the quantity of biomass it contains and by the properties of the delay distribution. The quantity of biomass and the length of the delay play a significant role in determining the existence of equilibrium solutions, since a sufficiently small amount of biomass or a long enough delay can lead to the extinction of a species. Furthermore, the quantity of biomass and length of delay are important since a small change in either can change the stability of an equilibrium solution. We explore these effects for a variety of delay distributions using both analytical and numerical techniques, and verify these results with simulations.  相似文献   

18.
A number of mathematical models of the human respiratory control system have been developed since 1940 to study a wide range of features of this complex system. Among them, periodic breathing (including Cheyne-Stokes respiration and apneustic breathing) is a collection of regular but involuntary breathing patterns that have important medical implications. The hypothesis that periodic breathing is the result of delay in the feedback signals to the respiratory control system has been studied since the work of Grodins et al. in the early 1950's [1]. The purpose of this paper is to study the stability characteristics of a feedback control system of five differential equations with delays in both the state and control variables presented by Khoo et al. [4] in 1991 for modeling human respiration. The paper is divided in two parts. Part I studies a simplified mathematical model of two nonlinear state equations modeling arterial partial pressures of O2 and CO2 and a peripheral controller. Analysis was done on this model to illuminate the effect of delay on the stability. It shows that delay dependent stability is affected by the controller gain, compartmental volumes and the manner in which changes in the ventilation rate is produced (i.e., by deeper breathing or faster breathing). In addition, numerical simulations were performed to validate analytical results. Part II extends the model in Part I to include both peripheral and central controllers. This, however, necessitates the introduction of a third state equation modeling CO2 levels in the brain. In addition to analytical studies on delay dependent stability, it shows that the decreased cardiac output (and hence increased delay) resulting from the congestive heart condition can induce instability at certain control gain levels. These analytical results were also confirmed by numerical simulations.  相似文献   

19.
Kar TK  Batabyal A 《Bio Systems》2011,104(2-3):127-135
This paper focuses on the study of a nonlinear mathematical SIR epidemic model with a vaccination program. We have discussed the existence and the stability of both the disease free and endemic equilibrium. Vaccine induced reproduction number is determined and the impact of vaccination in reducing the vaccine induced reproduction number is discussed. Then to achieve control of the disease, a control problem is formulated and it is shown that an optimal control exists for our model. The optimality system is derived and solved numerically using the Runge-Kutta fourth order procedure.  相似文献   

20.
具有三个年龄阶段的单种群自食模型   总被引:5,自引:1,他引:4  
建立并研究了两个具有三个年龄阶段的单种群自食模型.这篇文章的主要目的是研究时滞对种群生长的作用,对于没有时滞的的模型,我们利用Liapunov函数,得到了系统平衡点全局渐近稳定的充分条件;而具有时滞的的模型,我们得到,随着时滞T增加,当系数满足一定条件时,正平衡点的稳定性可以改变有限次,最后变成不稳定;否则,时滞模型的正平衡点的稳定性不改变。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号