首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the marine mollusk Aplysia limacina, a substantial amount of endogenous D-aspartic acid (D-Asp) was found following its synthesis from L-aspartate by an aspartate racemase. Concentrations of D-Asp between 3.9 and 4.6 micromol/g tissue were found in the cerebral, abdominal, buccal, pleural, and pedal ganglia. In non nervous tissues, D-Asp occurred at a very low concentration compared to the nervous system. Immunohistochemical studies conducted on cultured Aplysia neurons using an anti-D-aspartate antibody demonstrated that D-Asp occurs in the soma, dendrites, and in synaptic varicosities. Synaptosomes and synaptic vesicles from cerebral ganglia were prepared and characterized by electron microscopy. HPLC analysis revealed high concentrations of D-Asp together with L-aspartate and L-glutamate in isolated synaptosomes In addition, D-Asp was released from synaptosomes by K+ depolarization or by ionomycin. D-Asp was one of the principal amino acids present in synaptic vesicles representing about the 25% of total amino acids present in these cellular organelles. Injection of D-Asp into live animals or addition to the incubation media of cultured neurons, caused an increase in cAMP content. Taken as a whole, these findings suggest a possible role of D-Asp in neurotransmission in the nervous system of Aplysia limacina.  相似文献   

2.
We discovered and characterized a novel type D-aspartyl endopeptidase (DAEP) produced extracellularly by Paenibacillus sp. B38. This bacterial DAEP of M(r) 34,798 (named paenidase) appeared to be converted into a smaller form of M(r) 34,169 by the proteolytic removal of 5 amino acid residues from the N-terminal. The intact and modified forms of the enzyme displayed essentially the same enzymatic properties. The enzyme specifically hydrolyzed succinyl-D-aspartic acid alpha-(p-nitroanilide) and succinyl-D-aspartic acid alpha-(4-methylcoumaryl-7-amide) to generate p-nitroaniline and 7-amino-4-methylcoumarin, and internally cleaved a synthetic peptide (D-A-E-F-R-H-[D-Asp]-G-S-Y) of the [D-Asp](7) amyloid beta (Abeta) protein between [D-Asp](7)-G(8). Either was totally inert to the normal Abeta peptide sequence containing L-Asp, instead of D-Asp at the 7th position. Thus, paenidase is the first DAEP from a microorganism that specifically recognizes an internal D-Asp residue to cleave [D-Asp]-X peptide bonds.  相似文献   

3.
The understanding of D-amino acid metabolism in higher plants lags far behind that in mammals, for which the biological functions of these unique amino acids have already been elucidated. In this article, we report on the biochemical behavior of D-amino acids (particularly D-Asp) and relevant metabolic enzymes in Arabidopsis thaliana. During germination and growth of the plant, a transient increase in D-Asp levels was observed, suggesting that D-Asp is synthesized in the plant. Administration of D-Asp suppressed growth, although the inhibitory mechanism responsible for this remains to be clarified. Exogenous D-Asp was efficiently incorporated and metabolized, and was converted to other D-amino acids (D-Glu and D-Ala). We then studied the related metabolic enzymes, and consequently cloned and characterized A. thaliana D-amino acid aminotransferase, which is presumably involved in the metabolism of D-Asp in the plant by catalyzing transamination between D-amino acids. This is the first report of cDNA cloning and functional characterization of a D-amino acid aminotransferase in eukaryotes. The results presented here provide important information for understanding the significance of D-amino acids in the metabolism of higher plants.  相似文献   

4.

Aims

L-Aspartate (L-Asp) and D-aspartate (D-Asp) are physiologically important amino acids in mammals and birds. However, the functions of these amino acids have not yet been fully understood. In this study, we therefore examined the effects of L-Asp and D-Asp in terms of regulating body temperature, plasma metabolites and catecholamines in chicks.

Main methods

Chicks were first orally administered with different doses (0, 3.75, 7.5 and 15 mmol/kg body weight) of L- or D-Asp to monitor the effects of these amino acids on rectal temperature during 120 min of the experimental period.

Key findings

Oral administration of D-Asp, but not of L-Asp, linearly decreased the rectal temperature in chicks. Importantly, orally administered D-Asp led to a significant reduction in body temperature in chicks even under high ambient temperature (HT) conditions. However, centrally administered D-Asp did not significantly influence the body temperature in chicks. As for plasma metabolites and catecholamines, orally administered D-Asp led to decreased triacylglycerol and uric acid concentrations and increased glucose and chlorine concentrations but did not alter plasma catecholamines.

Significance

These results suggest that oral administration of D-Asp may play a potent role in reducing body temperature under both normal and HT conditions. The alteration of plasma metabolites further indicates that D-Asp may contribute to the regulation of metabolic activity in chicks.  相似文献   

5.
6.
It was long believed that D-amino acids were either unnatural isomers or laboratorial artifacts and that the important functions of amino acids were exerted only by l-amino acids. However, recent investigations have shown that a variety of D-amino acids are present in mammals and that they play important roles in physiological functions in the body. Among the free d-amino acids that have been identified in mammals, D-aspartate (D-Asp) has been shown to play a crucial role in the neuroendocrine and endocrine systems as well as in the central nervous system. Here, we present an overview of recent studies of free D-Asp, focusing on the analytical methods in real biological matrices, expression and localization in tissues and cells, biological and physiological activities, biosynthesis, degradation, cellular transport, and possible relevance to disease. In addition to frequently used techniques for the enantiomeric determination of amino acids, including high-performance liquid chromatography and enzymatic methods, the recent development of analytical methods is also described.  相似文献   

7.
Using two specific and sensitive fluorometric/HPLC methods and a GC-MS method, alone and in combination with D-aspartate oxidase, we have demonstrated for the first time that N-methyl-D-aspartate (NMDA), in addition to D-aspartate (D-Asp), is endogenously present as a natural molecule in rat nervous system and endocrine glands. Both of these amino acids are mostly concentrated at nmol/g levels in the adenohypophysis, hypothalamus, brain, and testis. The adenohypophysis maximally showed the ability to accumulate D-Asp when the latter is exogenously administered. In vivo experiments, consisting of the i.p. injection of D-Asp, showed that D-Asp induced both growth hormone and luteinizing hormone (LH) release. However, in vitro experiments showed that D-Asp was able to induce LH release from adenohypophysis only when this gland was co-incubated with the hypothalamus. This is because D-Asp also induces the release of GnRH from the hypothalamus, which in turn is directly responsible for the D-Asp-induced LH secretion from the pituitary gland. Compared to D-Asp, NMDA elicits its hormone release action at concentrations approximately 100-fold lower than D-Asp. D-AP5, a specific NMDA receptor antagonist, inhibited D-Asp and NMDA hormonal activity, demonstrating that these actions are mediated by NMDA receptors. NMDA is biosynthesized from D-Asp by an S-adenosylmethionine-dependent enzyme, which we tentatively denominated as NMDA synthase.  相似文献   

8.
Summary Free D-Ser, D-Asp and total D-amino acids were significantly higher (p < 0.05) in Alzheimer (AD) ventricular CSF than in normal CSF. There was no significant difference in the total L-amino acids between AD and normal CSF, but L-Gln and L-His were significantly higher (p < 0.05) in ADCSF. The higher concentrations of these D- and L-amino acids in AD ventricular CSF could reflect the degenerative process that occurs in Alzheimer's brain since ventricular CSF is the repository of amino acids from the brain.  相似文献   

9.
Bacteria such as Lactococcus lactis have D-aspartate (D-Asp) or its amidated derivative D-asparagine (D-Asn), in their peptidoglycan (PG) interpeptide crossbridge. We performed a subtractive genome analysis to identify L. lactis gene yxbA, orthologues of which being present only in bacteria containing D-amino acids in their PG crossbridge, but absent from those that instead insert L-amino acids or glycine. Inactivation of yxbA required a complementing Streptococcus pneumoniae murMN genes, which express enzymes that incorporate L-Ser-L-Ala or L-Ala-L-Ala in the PG crossbridge. Our results show that (i) yxbA encodes D-Asp ligase responsible for incorporation of D-Asp in the PG crossbridge, and we therefore renamed it as aslA, (ii) it is an essential gene, which makes its product a potential target for specific antimicrobials, (iii) the absence of D-Asp may be complemented by L-Ser-L-Ala or L-Ala-L-Ala in the L. lactis PG, indicating that the PG synthesis machinery is not selective for the side-chain residues, and (iv) lactococcal strains having L-amino acids in their PG crossbridge display defects in cell wall integrity, but are able to efficiently anchor cell wall proteins, indicating relative flexibility of lactococcal transpeptidation reactions with respect to changes in PG sidechain composition.  相似文献   

10.
D-aspartate (D-Asp) is found in specific neurons, transported to neuronal terminals and released in a stimulation-dependent manner. Because D-Asp formation is not well understood, determining its function has proved challenging. Significant levels of D-Asp are present in the cerebral ganglion of the F- and C-clusters of the invertebrate Aplysia californica, and D-Asp appears to be involved in cell-cell communication in this system. Here, we describe a novel protein, DAR1, from A. californica that can convert aspartate and serine to their other chiral form in a pyridoxal 5'-phosphate (PLP)-dependent manner. DAR1 has a predicted length of 325 amino acids and is 55% identical to the bivalve aspartate racemase, EC 5.1.1.13, and 41% identical to the mammalian serine racemase, EC 5.1.1.18. However, it is only 14% identical to the recently reported mammalian aspartate racemase, DR, which is closely related to glutamate-oxaloacetate transaminase, EC 2.6.1.1. Using whole-mount immunohistochemistry staining of the A. californica central nervous system, we localized DAR1-like immunoreactivity to the medial region of the cerebral ganglion where the F- and C-clusters are situated. The biochemical and functional similarities between DAR1 and other animal serine and aspartate racemases make it valuable for examining PLP-dependent racemases, promising to increase our knowledge of enzyme regulation and ultimately, D-serine and D-Asp signaling pathways.  相似文献   

11.
A novel optically active thiol compound, N-(tert-butylthiocarbamoyl)-L-cysteine ethyl ester (BTCC), is synthesized as a chiral derivatization reagent. This compound and o-phthalaldehyde react with amino acid enantiomers to produce fluorescent diastereomers that are readily separable on a reverse-phase column by HPLC. Enantioseparation of acidic amino acids in particular is markedly improved using BTCC. In this study, the HPLC method for enantioseparation with the novel compound is applied to the aspartate (Asp) racemase assay. Derivatized D-Asp is eluted before the L-Asp derivative. Consequently, a small amount of D-Asp produced by the activity of racemase on a large quantity of L-Asp substrate may be quantified accurately, even at very low activity. Since the derivatization reaction proceeds rapidly at room temperature, a fully automated system is established for derivatization and sample injection. The automated method is practical and successfully applied to the archaeal Asp racemase assay. We presume that the procedure is additionally applicable to the enantioseparation of other amino acids, amino alcohols, and catecholamines.  相似文献   

12.
The effects of racemization of aspartic acid on triple-helical formation have been studied using a "host-guest" peptide approach where selected guest Gly-Xaa-Yaa triplets were included within a common acetyl-(Gly-Pro-Hyp)3-Gly-Xaa-Yaa-(Gly-Pro-Hyp)4-Gly-Gly-amide frame-work. Four guest triplets, Gly-Asp-Hyp and Gly-Asp-Ala where Asp is either L-Asp or D-Asp were studied. Thermal stability data indicated that incorporation of D-Asp residues prevented triple-helix formation in phosphate buffered saline, although triple-helical structures were formed in a stabilizing solvent, 67% aqueous ethylene glycol. In this solvent the melting temperatures of D-Asp containing peptides were more than 30 degrees C lower than the corresponding peptides containing L-Asp. For Gly-Asp-Ala peptides, but not Gly-Asp-Hyp, peptides, melting profiles indicated that a mixture of the D- and L-Asp containing peptides were able to form heterotrimer triple-helical molecules. These studies illustrate the dramatic destabilizing effect of D-amino acids on the triple-helix stability, but indicate that they can be accommodated in this conformation.  相似文献   

13.
High concentrations of free D-aspartate (D-Asp), an amino acid well known for its neuroexcitatory activity, are endogeneously present in the Harderian gland (HG) of the lizard Podarcis s. sicula. This orbital gland consists of two different parts: the medial part, which is prevalently a mucous acinar gland, and the lateral part, which is a serous tubulo-acinar gland. To determine the physiological effect of D-Asp on exocrine secretion in HG, D-Asp (2.0 micromol/g b.w.) was injected intraperitoneally into lizards. We found that highest accumulations of exogenous D-Asp in HGs occurred 15 hr after the injection. Specifically, exogenous D-Asp prevalently stimulated serous secretion from the lateral portion of the gland, where immunohistochemical analysis revealed a major accumulation. Similarly, in the medial part of the gland, highly sulfated mucosubstances were observed after D-Asp injection. Further, in both parts of the HG, the electron microscope revealed euchromatic nuclei, a prominent rough endoplasmic reticulum, as well as numerous secretory granules within the acinar cells. Thus, following D-Asp injection, a 60% increase in HG total protein was detected. In addition, exogenous D-Asp induced changes in the electrophoretic pattern of HG. In conclusion, although further investigations are still needed to clarify the molecular pathway induced by D-Asp in exocrine secretion, this study does indicate that free D-Asp plays a significant role in the secretory activity of this gland.  相似文献   

14.
To characterize acidic amino acid transport in type 2 astrocytes, we established conditionally immortalized rat astrocyte cell lines (TR-AST) from newly developed transgenic rats harboring temperature-sensitive SV40 large T-antigen gene. TR-AST exhibited positive immunostaining for anti-GFAP antibody and A2B5 antibody, characteristics associated with type 2 astrocytes, and expressed glutamine synthetase. Acidic amino acid transporters, GLT-1 and system xc-, which consists of xCT and 4F2hc, were expressed in all TR-ASTs by RT-PCR. On the other hand, GLAST expression was found in TR-AST3 and 5. The characteristics of [3H]L-glutamic acid (L-Glu) uptake by TR-AST5 include an Na+-dependent and Na+-independent manner, concentration-dependence, and inhibition by L-aspartic acid (L-Asp) and D-aspartic acid (D-Asp). The corresponding Michaelis-Menten constants for the Na+-dependent and Na+-independent process were 36.3 microM and 155 microM, respectively. [3H]L-Asp and [3H]D-Asp uptake by TR-AST5 had an Na+-dependent and Na+-independent manner. This study demonstrated that GLT-1, system xc-, and GLAST were expressed in TR-AST, which has the characteristics of type 2 astrocytes and is able to transport acidic amino acids.  相似文献   

15.
Previous studies have shown that rainbow trout fed on diets containing whole protein have superior growth rates compared to fish fed on diets of similar amino acid composition but containing a high proportion of free amino acids. The influence of several nutritional factors on the uptake of radioactivity from food pellets containing either [U-I4C] protein or [U-14C] amino acids into the systemic blood of trout has been investigated. The time taken for radioactivity in the free amino acid fraction of blood to reach a peak after a meal containing [U-14C] protein had been given was much shorter, and the level of radioactivity in the blood higher, in trout with almost empty stomachs than in fish with almost full stomachs; uptake of radioactivity into blood amino acids was also more rapid and reached much higher concentrations when pellets containing [U-14C] amino acids were fed than when [U-14C] protein was fed. Incorporation of radioactivity into blood protein continued for a much longer period and reached higher levels when a pellet containing [U-14C] protein was fed than when a pellet containing [U-14C] amino acids was fed. Previous dietary history (low or high protein intake) did not appear to affect the rate of absorption of amino acids from either protein or free amino acid pellets. The uptake rates from pellets containing free amino acids could be slowed by mixing the dietary amino acids with albumin. The distribution, postabsorption, of radioactivity in the different fractions of blood and liver suggested that incorporation of carbon residues into glycogen and lipid from an amino acid diet was greater than from a protein diet. The converse was true of incorporation of radioactivity into tissue protein.  相似文献   

16.
The cephalochordate amphioxus is the closest invertebrate relative to vertebrates. In this study, using HPLC technique, free L-amino acids (L-AAs) and D-aspartic acid (D-Asp) have been detected in the nervous system of the amphioxus Branchiostoma lanceolatum. Among other amino acids glutamate, aspartate, glycine, alanine and serine are the amino acids found at the greatest concentrations. As it occurs in the nervous system of other animal phyla, glutamate (L-Glu) and aspartate (L-Asp) are present at very high concentrations in the amphioxus nervous system compared to other amino acids, whereas the concentration of taurine and gamma-aminobutyric acid (GABA) is very low. Interestingly, as it is the case in vertebrates, D-aspartic acid is present as an endogenous compound in amphioxus nervous tissues. The physiological function of excitatory amino acids, and D-aspartate in particular, are discussed in terms of evolution of the nervous system under an Evo-fun (Evolution of function) perspective.  相似文献   

17.
1. A hydroxyproline-containing protein was isolated from the soluble fraction of sandal leaves (Santalum album L.) and the purified protein was homogeneous by disc electrophoresis. 2. It is a glycoprotein containing 16% carbohydrate, the components of which were mainly arabinose, with only small amounts (about 5%) of galactose. The principal amino acids were glutamic acid, aspartic acid, glycine, alanine, arginine, lysine, proline and hydroxyproline, which together comprised 60% of the total. The number of acidic amino acids exceeds the number of basic amino acids. By Sephadex gel filtration, the approximate molecular weight was found to be about 63000. The ratio of residues of hydroxyproline to those of arabinose was 1:2. 3. The native protein is resistant to the action of several proteolytic enzymes. After partial hydrolysis with 0.1m-HCl, the protein became susceptible to attack by Pronase but remained resistant to collagenase.  相似文献   

18.
D-aspartate ligase has remained the last unidentified peptide bond-forming enzyme in the peptidoglycan assembly pathway of Gram-positive bacteria. Here we show that a two-gene cluster of Enterococcus faecium encodes aspartate racemase (Racfm) and ligase (Aslfm) for incorporation of D-Asp into the side chain of the peptidoglycan precursor. Aslfm was identified as a new member of the ATP-grasp protein superfamily, which includes a diverse set of enzymes catalyzing ATP-dependent carboxylate-amine ligation reactions. Aslfm specifically ligated the beta-carboxylate of D-Asp to the epsilon-amino group of L-Lys in the nucleotide precursor UDP-N-acetylmuramyl-pentapeptide. D-iso-asparagine was not a substrate of Aslfm, indicating that the presence of this amino acid in the peptidoglycan of E. faecium results from amidation of the alpha-carboxyl of D-Asp after its addition to the precursor. Heterospecific expression of the genes encoding Racfm and Aslfm in Enterococcus faecalis led to production of stem peptides substituted by D-Asp instead of L-Ala2, providing evidence for the in vivo specificity and function of these enzymes. Strikingly, sequencing of the cross-bridges revealed that substitution of L-Ala2 by D-Asp is tolerated by the d,d-transpeptidase activity of the penicillin-binding proteins both in the acceptor and in the donor substrates. The Aslfm ligase appears as an attractive target for the development of narrow spectrum antibiotics active against multiresistant E. faecium.  相似文献   

19.
The effects of amino acids on protein turnover in skeletal muscle were determined in the perfused rat hemicorpus preparation. Perfusion of preparations from fasted young rats (81±2 g) with medium containing either a complete mixture of amino acids at five times (5×) their normal plasma levels, a mixture of leucine, isoleucine, and valine at 5× or 10× levels, or leucine alone (10×) resulted in a 25–50% increase in muscle protein synthesis and a 30% decrease in protein degradation compared to fasted controls perfused in the absence of exogenously added amino acids. When the branched-chain amino acids were omitted from the complete mixture, the remaining amino acids (5×) had no effect on protein turnover. The complete mixture at 1× levels was also ineffective. Comparison of the effects of amino acids with those of glucose and palmitate indicated that amino acids were not acting by providing substrates for energy metabolism. The stimulatory effect of amino acids on protein synthesis was associated with a facilitated rate of peptide-chain initiation as evidenced by a relative decrease in the level of ribosomal subunits. This response was not as great as that produced by insulin, and the amino acids did not augment the effect of insulin. Although protein synthesis in preparations from fed young rats (130±3 g) was stimulated by the addition of a mixture of the branched-chain amino acids (5×) to about the same extent as that observed in the fasted young rats, protein degradation was not affected. Furthermore, neither synthesis nor degradation were affected in preparations from fasted older rats (203±9 g) suggesting that the age and or nitritional state of the animal may influence the response of skeletal muscle to altered amino acid levels.  相似文献   

20.
The contribution of Chloroflexi-type SAR202 cells to total picoplankton and bacterial abundance and uptake of D- and L-aspartic acids (Asp) was determined in the different meso- and bathypelagic water masses of the (sub)tropical Atlantic (from 35 degrees N to 5 degrees S). Fluorescence in situ hybridization (FISH) revealed that the overall abundance of SAR202 was < or = 1 x 10(3) cells ml(-1) in subsurface waters (100 m layer), increasing in the mesopelagic zone to 3 x 10(3) cells ml(-1) and remaining fairly constant down to 4000 m depth. Overall, the percentage of total picoplankton identified as SAR202 increased from < 1% in subsurface waters to 10-20% in the bathypelagic waters. On average, members of the SAR202 cluster accounted for about 30% of the Bacteria in the bathypelagic waters, whereas in the mesopelagic and subsurface waters, SAR202 cells contributed < 5% to total bacterial abundance. The ratio of D-Asp : L-Asp uptake by the bulk picoplankton community increased from the subsurface layer (D-Asp : L-Asp uptake ratio approximately 0.03) to the deeper layers reaching a ratio of approximately 1 at 4000 m depth. Combining FISH with microautoradiography to determine the proportion of SAR202 cells taking up D-Asp versus L-Asp, we found that approximately 30% of the SAR202 cells were taking up L-Asp throughout the water column while D-Asp was essentially not taken up by SAR202. This D-Asp : L-Asp uptake pattern of SAR202 cells is in contrast to that of the bulk bacterial and crenarchaeal community in the bathypelagic ocean, both sustaining a higher fraction of D-Asp-positive cells than L-Asp-positive cells. Thus, although the Chloroflexi-type SAR202 constitutes a major bathypelagic bacterial cluster, it does not contribute to the large fraction of d-Asp utilizing prokaryotic community in the meso- and bathypelagic waters of the North Atlantic, but rather utilizes preferentially L-amino acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号