首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The multienzyme complex for fatty acid oxidation was purified from Pseudomonas fragi, which was grown on oleic acid as the sole carbon source. This complex exhibited enoyl-CoA hydratase [EC 4.2.1.17], 3-hydroxyacyl-CoA dehydrogenase [EC 1.1.1.35], 3-oxoacyl-CoA thiolase [EC 2.3.1.16], cis-3,trans-2-enoyl-CoA isomerase [EC 5.3.3.3], and 3-hydroxyacyl-CoA epimerase [EC 5.1.2.3] activities. The molecular weight of the native complex was estimated to be 240,000. Two types of subunits, with molecular weights of 73,000 and 42,000, were identified. The complex was composed of two copies each of the 73,000- and 42,000-Da subunits. The beta-oxidation system was reconstituted in vitro using the multienzyme complex, acyl-CoA synthetase and acyl-CoA oxidase. This reconstituted system completely oxidized saturated fatty acids with acyl chains of from 4 to 18 carbon atoms as well as unsaturated fatty acids having cis double bonds extending from odd-numbered carbon atoms. However, unsaturated fatty acids having cis double bonds extending from even-numbered carbon atoms were not completely oxidized to acetyl-CoA: about 5 mol of acetyl-CoA was produced from 1 mol of linoleic or alpha-linolenic acid, and about 2 mol of acetyl-CoA from 1 mol of gamma-linolenic acid. These results suggested that the 3-hydroxyacyl-CoA epimerase in the complex was not operative. When the epimerase was by-passed by the addition of 2,4-dienoyl-CoA reductase to the reconstituted system, unsaturated fatty acids with cis double bonds extending from even-numbered carbon atoms were also completely degraded to acetyl-CoA.  相似文献   

2.
Chain elongation of polyunsaturated acids has been investigated using microsomes from developing rat brain. With 18:3(n ? 6) in 0.05% detergent as an acceptor and [2-14C]malonyl-coenzyme A (CoA) as a two-carbon donor, incorporation of radioactivity into 20:3 was optimal (and incorporation into other acyl chains was minimal) in the presence of 100 μm substrate, 200 μmp-bromophenacylbromide and 10 mm KCN. Up to 30% of the labeled products were incorporated into phospholipids and triacylglycerol. Maximal microsomal elongation activity was observed at 3–4 weeks of age. Several other fatty acid or acyl-CoA acceptors tested in this system were elongated at slower rates compared to 18:3(n ? 6) [e.g., 16:0-CoA, 75%; 20:4(n ? 6), 57%; 18:3(n ? 3), 13%; 18:2(n ?6), 10%; 20:3(n ? 6), 6%]. The rate of elongation of chemically synthesized 18:3-CoA was only 50% of the detergent-suspended acid and was optimal at 6 μm substrate; inhibition above 6 μm 18:3-CoA was reduced by bovine serum albumin, but incorporation of label into palmitate was greatly stimulated. CoA markedly inhibited elongation of 18:3(n ? 6) or 18:3-CoA; N-ethylmaleimide at equimolar amounts reversed this CoA inhibition but did not alter the inhibition caused by concentrations of 18:3-CoA above 6 μm. ATP was absolutely required for elongation of either the free acid or the acyl-CoA derivative, whereas exogenous MgCl2 had little effect.  相似文献   

3.
4.
This work presents the purification and further characterization of the aldehyde dehydrogenase reconstitutively active in fatty alcohol oxidation, from rabbit intestinal microsomes. Microsomal aldehyde dehydrogenase was solubilized with cholate and purified by using chromatography on 6-amino-n-hexyl-Sepharose and 5'-AMP-Sepharose. The purified enzyme migrated as a single polypeptide band with molecular weight of 60,000 on SDS-polyacrylamide gel. By gel filtration in the presence of detergent, its apparent molecular weight was estimated to be 370,000. In the detergent-free solution, in contrast, it had a much higher molecular weight, indicating its association in forming large aggregates. The pH optimum was 9.0 when pyrophosphate buffer was used. The enzyme was active toward various aliphatic aldehydes with more than three carbons. The Km value for substrate seemed to decrease with increase in the chain length. The microsomal aldehyde dehydrogenase was not affected by disulfiram and MgCl2, which were, in contrast, highly inhibitory towards the activity of the cytosolic aldehyde dehydrogenase separated from intestinal mucosa.  相似文献   

5.
6.
7.
Enzymatic oxidation of bilirubin by intestinal mucosa   总被引:1,自引:0,他引:1  
Bilirubin oxidase, an aerobic enzyme which degrades bilirubin 'in vitro' to colourless diazo-negative compounds, including propentdyopents and trace amounts of biliverdin, has been demonstrated in homogenates of rat intestine, kidney and liver. The enzyme in the intestinal mucosa has been partially characterised and appears to be mitochondrial in origin; maximal activity was detected in the jejunum. Intestinal bilirubin oxidase has a mean activity of 0.51 +/- 0.03 (S.D.) nmol bilirubin degraded/min per mg protein. Similar bilirubin oxidase activities were found in the tissue of Sprague-Dawley and Gunn rats. The role of the enzyme 'in vivo' remains to be determined.  相似文献   

8.
1. Formation of catechols from benzene and nitrobenzene have been implicated in the carcinogenic activity of these chemicals. In liver, p-nitrophenol, an intermediate of p-nitrobenzene is enzymatically converted to 4-nitrocatechol. 2. For the first time in this study, the presence of a highly active enzyme catalyzing the formation of 4-nitrocatechol from p-nitrophenol was detected in lung microsomes. The average specific activity of lung p-nitrophenol hydroxylase was found to be 0.494 nmol 4-nitrocatechol formed mg prot-1 min-1. 3. The optimum conditions for sheep lung microsomal p-nitrophenol hydroxylase were established. The maximal activity was noted at pH 6.8. The rate of p-nitrophenol hydroxylation was linear up to 2 mg prot/ml of incubation mixture. The maximal rate of 4-nitrocatechol formation was observed with 0.25 mM p-nitrophenol. 4. The Lineweaver-Burk and Eadie-Hofstee plots were found to be curve-linear. Two different Km values were calculated as 11.6 and 71.4 microM from the Lineweaver-Burk plot and as 10.7 and 74.5 microM from the Eadie-Hofstee plot. This suggested that there were either two forms of enzyme or two different enzymes participating in ortho hydroxylation of p-nitrophenol in lung microsomes. 5. Lung microsomal p-nitrophenol hydroxylase activity of sheep was reconstituted in the presence of purified lung microsomal cytochrome P-450, NADPH dependent cytochrome P-450 reductase and synthetic lipid, phosphatidylcholine dilauroyl.  相似文献   

9.
10.
The selective inactivation of alcohol dehydrogenase by the inactivator found in the microsomal fraction of rice (Oryza sativa) seedlings growing in air (Shimomura, S. & Beevers, H. (1983) Plant Physiol. 71, 736-741; 742-746) was further studied. This inactivation was found to be essentially dependent on the presence of free fatty acids. The specificity for fatty acids and the inhibitory effects of imidazole, 2-hydroxyfatty acids and dithiothreitol on the inactivation were all consistent with the properties of the fatty acid alpha-oxidation system in plants. Both O2 consumption and decarboxylation of fatty acid due to alpha-oxidation were also demonstrated in rice microsomes. When purified rice alcohol dehydrogenase was added to the alpha-oxidation system in rice microsomes, the decarboxylation of fatty acid was inhibited, and the cysteinyl residues of alcohol dehydrogenase were oxidized. The oxidation of two cysteinyl residues per monomer resulted in the complete inactivation of the enzyme. The activity of the inactivator in the isolated microsomes was gradually lost during storage and was rapidly lost upon heating. The inactivation of alcohol dehydrogenase was observed even when the enzyme was separated from microsomes by a dialysis membrane. These results indicate that the inactivation of alcohol dehydrogenase is closely related to fatty acid alpha-oxidation. We postulate that an intermediate of alpha-oxidation is the inactivator.  相似文献   

11.
12.
13.
A rapid and simple spectrophotometric method was developed to measure the activity of the condensing enzyme component of the microsomal fatty acid chain elongation system. The intermediate product of the condensation reaction is the beta-ketoacyl CoA which exists in two tautomeric forms, i.e., keto and enol. The addition of bovine serum albumin (BSA) to a cuvette cell containing a beta-ketoacyl CoA derivative resulted in the formation of a 303-nm absorbance peak, characteristic of enolate formation. The beta-ketoacyl CoAs with carbon chain length of 6 to 18 interacted with BSA to produce the 303-nm peak; acetoacetyl CoA was the only beta-keto compound tested which did not interact with BSA to produce the peak. Other compounds which were unaffected by BSA included CoA, free beta-keto acid, beta-hydroxyacyl CoA, acyl CoA, trans-2-enoyl CoA, and malonyl CoA. BSA could not be replaced by ovalbumin; furthermore, denatured (boiling) BSA could not induce the 303-nm peak. The specific activity of the condensing enzyme measured by the spectrophotometric method compares favorably with the activity obtained by the radioactive method. The apparent extinction coefficient (epsilon) for the absorbance peak generated by the beta-keto thioester varied from 5 to 30 mM-1 cm-1 depending on the beta-keto derivative. The spectrophotometric procedure can be used in the determination of the condensing enzyme activity in not only hepatic microsomes but also in kidney and brain microsomes both of which have significantly lower activity. The advantages of the novel method over the radioactive method are that (i) it does not involve the use of radioactive compounds, (ii) it is much less cumbersome and significantly less costly, and (iii) it is rapid and easy to perform.  相似文献   

14.
15.
The participation of microsomal aldehyde reductase in long-chain fatty alcohol synthesis in the rat brain was examined. A reaction mixture of [1-14C]hexadecanoic acid with brain microsomes and NADPH formed two radioactive products having the same mobilities as pure hexadecanal (RF 0.61) and hexadecanol (RF 0.22), respectively, on TLC plates. The product of the RF 0.61 spot was further identified as hexadecanal using gas-liquid chromatography after methylation and TLC of its reduced product with LiAlH4 and semicarbazide. The ratio of hexadecanal to hexadecanol varied from 0.4 to 1.2 under the present experimental conditions. When solubilized rat brain microsomes were applied to a Sepharose 4B column coupled with the rabbit antibody raised against rat liver microsomal NADPH-cytochrome-c reductase, which reacts with aldehyde reductase from rat brain, the eluted fraction ceased to form [14C]hexadecanol but continued to form [14C]hexadecanal from [14C]hexadecanoic acid. These results strongly indicate that hexadecanal is the intermediate in the synthesis of hexadecanol from hexadecanoic acid in rat brain microsomes with the participation of microsomal aldehyde reductase.  相似文献   

16.
17.
1. With microsomal fractions of guinea-pig intestinal mucosa the mean specific activity of palmitoyl-CoA synthetase was approx. 1.3-fold the esterification of sn-glycerol 3-phosphate with palmitoyl-CoA generated by the endogenous synthetase. The latter activity was approx. 2.5- and 5-fold that when palmitoyl-CoA was generated from palmitoylcarnitine or when it was added directly to the assay system. 2. There were significant correlations (P<0.001) between the specific activities of palmitoyl-CoA synthetase and glycerolipid synthesis from either palmitate or palmitoylcarnitine. 3. The mean molar composition of glycerolipid synthesized from palmitate or palmitoylcarnitine was approx. 18% lysophosphatidate, 75% phosphatidate and 7% neutral lipid. 4. Glycerolipid synthesis from palmitate was inhibited by 80–90% after preincubation of microsomal fractions at 37°C for 40min and was caused by inactivation of palmitoyl-CoA synthetase. 5. Addition of 100–400mm-KCl inhibited palmitoyl-CoA synthetase activity and glycerolipid synthesis from palmitate but stimulated glycerol phosphate acyltransferase activity. 6. Diversion of palmitoyl-CoA synthesized by the endogenous synthetase to palmitoylcarnitine resulted in an almost stoicheiometric decrease in glycerolipid synthesis. 7. Addition of rac-1-monopalmitin promoted utilization of palmitoyl-CoA by the monoglyceride pathway but did not inhibit phosphatidate biosynthesis. 8. With rate-limiting concentrations of CoA and Mg2+ the relative decreases in velocity for palmitoyl-CoA synthetase and glycerolipid synthesis from palmitate were almost identical. However, low concentrations of palmitate and ATP produced greater decreases in synthetase activity than in glycerolipid synthesis. 9. There appears to be a fine balance between the activities of palmitoyl-CoA synthetase and glycerol phosphate acyltransferase, with neither activity being in excess with respect to phosphatidate synthesis.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号