首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Here, we analyzed histological findings and parasite burden in chronic Neospora caninum infection in BALB/c and ICR mice and studied the correlation between lesion severity and parasite load in brain. To obtain a better understanding of the infection, we examined the influence of various host pathogen factors. Groups of outbred (ICR) and inbred (BALB/c) mice were inoculated using several NC-1 parasite doses (4 x 10(5), 10(6), and 5 x 10(6) tachyzoites), inoculation routes (intraperitoneal and subcutaneous), and 3 immunosuppressive treatments (methylprednisolone, cyclophosphamide, and vinblastine). Lesion severity was analyzed in the liver, lung, heart, and brain tissues, and parasite load was measured by real-time polymerase chain reaction in brain tissue. The results indicated more severe cerebral lesions and higher brain parasite burdens in inbred than in outbred mice. Hepatic tissue was the primary lesion site in immunosuppressed ICR mice. We also observed that increased inoculum size was reflected in greater lesion severity and a higher cerebral parasite load. No difference was observed with respect to inoculation route. The study also showed an association between brain parasite burden and severity of cerebral lesions in BALB/c mice.  相似文献   

2.
DNA- and protein- based vaccines against cutaneous leishmaniasis due to Leishmania major were evaluated using a challenge model that more closely reproduces the pathology and immunity associated with sand fly-transmitted infection. C57BL/6 mice were vaccinated s.c. with a mixture of plasmid DNAs encoding the Leishmania Ags LACK, LmSTI1, and TSA (AgDNA), or with autoclaved L. major promastigotes (ALM) plus rIL-12, and the mice were challenged by inoculation of 100 metacyclic promastigotes in the ear dermis. When challenged at 2 wk postvaccination, mice receiving AgDNA or ALM/rIL-12 were completely protected against the development of dermal lesions, and both groups had a 100-fold reduction in peak dermal parasite loads compared with controls. When challenged at 12 wk, mice vaccinated with ALM/rIL-12 maintained partial protection against dermal lesions and their parasite loads were no longer significantly reduced, whereas the mice vaccinated with AgDNA remained completely protected and had a 1000-fold reduction in dermal parasite loads. Mice vaccinated with AgDNA also harbored few, if any, parasites in the skin during the chronic phase, and their ability to transmit L. major to vector sand flies was completely abrogated. The durable protection in mice vaccinated with AgDNA was associated with the recruitment of both CD8(+) and CD4(+) T cells to the site of intradermal challenge and with IFN-gamma production by CD8(+) T cells in lymph nodes draining the challenge site. These data suggest that under conditions of natural challenge, DNA vaccination has the capacity to confer complete protection against cutaneous leishmaniasis and to prevent the establishment of infection reservoirs.  相似文献   

3.
Sarcocystis neurona is a protozoan parasite that causes a neurological disease in horses called equine protozoal myeloencephalitis. The route of transmission is speculated to be by fecal-oral transfer of sporocysts shed from opossums. Controversy exists regarding both the natural life cycle for this parasite as well as the species identity of opossum Sarcocystis. To provide stage-specific material for species comparison, 27 opossums from southern Michigan were screened for Sarcocystis spp. sporocysts. Seven opossums were positive for Sarcocystis sporocysts by fecal flotation. A simplified, effective technique for isolation, excystation, and culture of opossum Sarcocystis sp. from mucosal scrapings was developed. All 7 Sarcocystis sp. isolates were successfully cultured to grow long term in equine dermal cells to the merozoite stage. Merozoites were observed between 5 and 15 days after inoculation. In conclusion, opossums shed Sarcocystis sp. sporocysts that may be manipulated to excyst and grow in vitro in equine dermal cell lines to the merozoite stage using the simplified technique described.  相似文献   

4.
Besnoitia tarandi tissue cysts were found in naturally-infected reindeer (Rangifer tarandus) from Finland. Infectivity of its tissue cysts, bradyzoites, and tachyzoites to animals and cell culture was studied. The bradyzoites and tissue cysts were not infectious to out-bred mice, rabbits or gerbils. When fed tissue cysts, neither cats nor dogs excreted oocysts. However, the parasite was lethal to interferon-gamma gene knock out mice irrespective of the route of inoculation. The parasite was grown successfully in African Green Monkey cells from tissues of two reindeer for the first time. Non-dividing, uninucleate tachyzoites from smears from cell cultures were 5.6 x 1.4 microm (4.5-7.4 x 1.0-1.9, n=50) in size. Longitudinally-cut bradyzoites in tissue sections measured 7.4 x 1.3 microm (6.5-7.8 x 1.0-1.6, n=30). Ultrastructurally, tachyzoites and bradyzoites were similar to those in other Besnoitia species, and in particular to parasites described from cattle (Besnoitia besnoiti) and equids (Besnoitia bennetti) in that their bradyzoites lacked enigmatic bodies. Based on comparative analysis of three portions of nuclear ribosomal DNA (the small and large subunits and the first internal transcribed spacer) B. tarandi was found to be more closely related to the other congeners described from ungulates. The parasite was formally redescribed and specimens deposited in the US National Parasite Collection.  相似文献   

5.
Herpes simplex virus (HSV) pathogenesis in mice differs based on availability of the principal entry receptors herpesvirus entry mediator (HVEM) and nectin-1 in a manner dependent upon route of inoculation. After intravaginal or intracranial inoculation of adult mice, nectin-1 is a major mediator of neurologic disease, while the absence of either receptor attenuates disease after ocular infection. We tested the importance of receptor availability and route of infection on disease in mouse models of neonatal HSV. We infected 7-day-old mice lacking neither or one principal HSV receptor or both principal HSV receptors with HSV-2 via a peripheral route (intranasal), via a systemic route (intraperitoneal), or by inoculation directly into the central nervous system (intracranial). Mortality, neurologic disease, and visceral dissemination of virus were significantly attenuated in nectin-1 knockout mice compared with HVEM knockout or wild-type mice after intranasal inoculation. Mice lacking both entry receptors (double-knockout mice) showed no evidence of disease after inoculation by any route. Nectin-1 knockout mice had delayed mortality after intraperitoneal inoculation relative to wild-type and HVEM knockout mice, but virus was able to spread to the brain and viscera in all genotypes except double-knockout mice. Unlike in adult mice, HVEM was sufficient to mediate disease in neonatal mice after direct intracranial inoculation, and the absence of HVEM delayed time to mortality relative to that of wild-type mice. Additionally, in wild-type neonatal mice inoculated intracranially, HSV antigen did not primarily colocalize with NeuN-positive neurons. Our results suggest that differences in receptor expression between adults and newborns may partially explain differences in susceptibility to HSV-2.  相似文献   

6.
A model of Leishmania major infection in C57BL/6 mice has been established that combines two main features of natural transmission: low dose (100 metacyclic promastigotes) and inoculation into a dermal site (the ear dermis). The evolution of the dermal lesion could be dissociated into two distinct phases. The initial "silent" phase, lasting 4-5 wk, favored establishment of the peak load of parasites in the dermis in the absence of lesion formation or any overt histopathologic changes in the site. The second phase corresponds to the development of a lesion associated with an acute infiltration of neutrophils, macrophages, and eosinophils into the dermis and was coincident with the killing of parasites in the site. The onset of immunity/pathology was correlated with the appearance of cells staining for IL-12p40 and IFN-gamma in the epidermal compartment, and an expansion of T cells capable of producing IFN-gamma in the draining lymph node. Parasite growth was not enhanced over the first 4.5 wk in anti-CD4-treated mice, SCID mice, or C57BL/6 mice deficient in IL-12p40, IFN-gamma, CD40 ligand, or inducible NO synthase. These mice all failed to ultimately control infection in the site, but in some cases (anti-CD4 treated, IL-12p40-/-, CD40 ligand-/-, and SCID) high dermal parasite loads were associated with little or no pathology. These results extend to a natural infection model a role for Th1 cells in both acquired resistance and lesion formation, and document the remarkable avoidance of this response during a prolonged phase of parasite amplification in the skin.  相似文献   

7.
White T. R., Thompson R. C. A. and Penhale W. J. 1982. A comparative study of the susceptibility of inbred strains of mice to infection with Mesocestoides corti. International Journal for Parasitology12: 29–33. The susceptibility of 6 strains of inbred mice to infection with Mesocestoides corti was studied following both intraperitoneal and oral inoculation of tetrathyridia. The greatest degree of resistance was seen in C57BL/6 mice and this resistance was independent of route of inoculation. The proliferation of the parasite in C57BL/6 mice was compared with a more susceptible strain (CBA/H) on 7, 14, 21, 35 and 60 days post-infection. Although both strains harboured significantly different parasite burdens during the initial period following infection, these differences were no longer apparent by day 60.  相似文献   

8.
C3H/HeN mice that are naturally resistant to cutaneous disease and systemic infections with the protozoan parasite, Leishmania major, were treated at the time of infection, and weekly thereafter, with mouse anti-rat IFN-gamma mAb or an irrelevant antibody of similar isotype. Anti-IFN-gamma-treated mice developed cutaneous lesions; parasites spread to the regional lymph nodes and then metastasized to spleens and livers. The course of disease in these animals was similar to that of genetically susceptible BALB/c mice. Two exceptions in the pathology of L. major infections were noted between BALB/c and anti-IFN-gamma-treated C3H/HeN mice: 1) BALB/c mice died of systemic complications, whereas C3H/HeN mice did not, and 2) multinucleated giant cells were observed in lymph nodes and spleens of infected BALB/c mice, whereas these cells were not observed in infected C3H/HeN mice. Control mice, those treated with either saline or irrelevant antibody of the same isotype as the anti-IFN-gamma monoclonal, showed no evidence of cutaneous disease (development of footpad lesions) or systemic infection (by histopathology). Total abrogation of the natural resistance of C3H/HeN mice could be achieved by treatment with as little as 0.5 mg/mouse/wk of anti-IFN-gamma antibody, or by a single dose of 1 mg/mouse anti-IFN-gamma antibody administered at the time of parasite inoculation. If antibody treatment was delayed for as little as 1 wk after parasite inoculation, the infections in treated animals resembled that of untreated or control antibody-treated mice: no cutaneous lesions (by footpad swelling or viable counts of leishmania in footpad tissue) or systemic disease (by microscopic analysis of touch preparations of internal organs, and histopathology of same). The production of IFN-gamma during the initial interaction of the parasite and host cells appears to be a major component of genetic control of natural resistance to infection with L. major in C3H/HeN mice.  相似文献   

9.
Standard murine models of cutaneous leishmaniasis, involving s.c. inoculation of large numbers of Leishmania major promastigotes, have not supported an essential role for CD8(+) T cells in the control of primary infection. Recently, a L. major model combining two main features of natural transmission, low parasite dose and inoculation into a dermal site, has been established in resistant C57BL/6 mice. In the present studies, C57BL/6 mice with CD8(+) T cell deficiencies, including CD8(-/-) and CD8-depleted mice, failed to control the growth of L. major following inoculation of 100 metacyclic promastigotes into the ear dermis. The resulting dermal pathology was minor and delayed. Lesion formation in wild-type mice was coincident with the killing of parasites in the inoculation site. Both events were associated with the accumulation of CD8(+) T lymphocytes in the skin and with the capacity of CD8(+) T cells recovered from draining lymph nodes or infected dermis to release IFN-gamma following coculture with infected dendritic cells. Reconstitution of resistance to L. major in RAG(-/-) mice using T cells from naive donors was optimal when both CD4(+) and CD8(+) T cells were transferred. Primed CD8(+) T lymphocytes obtained from C57BL/6 mice during the acute stage of infection were able to mediate both pathology and immunity when transferred alone. The low dose, intradermal challenge model reveals that CD8(+) T cells play an essential role in both pathogenesis of and immunity to primary infection with L. major in the skin.  相似文献   

10.
Leishmania braziliensis is the species responsible for the majority of cases of human cutaneous leishmaniasis in Brazil. In the present study, L. braziliensis isolates from two different geographic areas in Brazil were studied by RAPD, using arbitrary primers. We also evaluated other biological features of these two isolates. We compared (a) the clinical features they initiate or not once delivered subcutaneously as stationary-phase promastigotes in the footpad of BALB/c mice; (b) the parasite load in both the footpad and the draining lymph node; (c) the cytokines present in the supernatant of cultures of the cell suspensions from the draining lymph nodes; and (d) the cell types present at the site of parasite delivery. The results show that the L. braziliensis strain from Ceará (H3227) is genotypically different from the L. braziliensis strain from Bahia (BA788). H3227-parasitized mice developed detectable lesions, whereas BA788-parasitized mice did not. Fifteen days post parasite inoculation there was an increase in the numbers of macrophages and lymphocytes in the footpads, whatever the parasite inoculum. Parasite load at the inoculation site--namely the footpad--did not differ significantly; in draining lymph nodes, however, it increased over the period under study. Early after parasite inoculation, the cells recovered from the draining lymph nodes of BA788-parasitized mice produced higher levels of IFN-gamma, a feature coupled to a higher number of NK cells. Later, after the parasite inoculation, there was an increased content of IL-12p70 and IL-10 in the supernatant of cells recovered from the lymph nodes of H3227-parasitized mice. This comparative analysis points out that L. braziliensis isolates differing in their genomic profiles do establish different parasitic processes in BALB/c mice.  相似文献   

11.
Male guinea-pigs were inoculated by the testicular route with a suspension of chlamydo-arthrospores of the filamentous phase ofC. immitis. The following histopathological changes were observed: voluminous pyocytic foci as well as granulomatous mononuclear reaction was initially observed and granuloma with multinucleated giant cells were seen 20 days after the inoculation. The following changes of the microscopic aspect of the parasite were correlatively registered: the so-called primary infection type of sporangia appear in great number three days after the inoculation. This type of sporangium is characterized by its great diameter up to 98 µ, peripheral endospore formation leaving a large central vacuole which frequently contain residual protoplasm. The endospores are thin walled, polyhedral and get free through an ostiole. Sporangia completely filled with globose endospores (the cystic type of sporangia) with radiate acidophilic formations on the peridial wall were observed in the testicles of the guinea-pigs killed 6 days after the inoculation. Reduction in number and in the size of the parasite were seen after the 20th. day of the inoculation. Radiate formation of the cell wall of the parasite appeared simultaneously with precipitin antibodies and would be the expression of antigen-antibody reaction. All the intermediate types of sporangia between the primary infection type and the cystic type were observed after the 10th. day of the inoculation.  相似文献   

12.
Immunodeficient mice were studied to determine their suitability as models in investigating the role of Taenia taeniaeformis larval products in the development of gastric hyperplasia. Recombinant active gene 2 (RAG2)-deficient and severe combined immune-deficient (SCID) mice were studied as candidate animal models. RAG2-deficient mice inoculated orally with T. taeniaeformis eggs developed gastric hyperplasia with alcian blue-periodic acid-Schiff-positive cell proliferation similar to those of rats. SCID mice inoculated with different doses and routes of T. taeniaeformis in vitro-hatched oncospheres and those orally inoculated with eggs resulted also in different degrees of gastric hyperplasia. Influence of inoculation forms of parasite, doses and routes of inoculation on initiation of hyperplastic gastropathy was suggested to be dependent on number and size of developed larvae. Both RAG2-deficient and SCID mice with hyperplastic mucosa were observed with significant loss of parietal cells. Apparent decrease in parietal cell number was observed in SCID mice at 2 weeks after intraperitoneal inoculation with oncospheres before hyperplastic lesions developed. Earliest occurrence of gastric hyperplasia in SCID mice was observed at 3 weeks after oral inoculation of in vitro-hatched oncospheres, sooner than orally inoculated rats. The results suggested that these immunodeficient mice could be used as animal models to study factors involved in T. taeniaeformis-induced gastric mucous cell hyperplasia.  相似文献   

13.
Systemic iron delivery to BALB/c mice, at time points surrounding the inoculation of 1000 Leishmania major metacyclic promastigotes intradermally in the ear results in the complete absence of onset and further development of ear lesion. In these iron-protected mice, the L. major intracellular progeny remains very low in both the ear and the draining lymph node. The iron-induced protective status is associated with a diphenyleneiodonium-sensitive sustained increased oxidative burst. We showed that iron-loaded mice developed no lesions at the site of the primary inoculation and were also resistant to reinoculation at a distant site (intradermal re-inoculation of 1000 metacyclic promastigotes in the contra-lateral ear). Interestingly, in the lymph node cell population recovered from iron-loaded mice at weeks 8 and 12 after the second parasite inoculation, and whatever the protective status studied--primary or resistant to re-inoculation--three potentially related features were observed: (i) NF-kappaB activation, (ii) enhanced TCR-mediated T lymphocyte proliferation, and (iii) high number of IFN-gamma-positive CD4(+)T cells. These results show a putative role of an iron-induced reactive oxygen species-dependent activation of NF-kappaB in the development of protective immunity against L. major.  相似文献   

14.
Parasite loads of different tissues were assessed in guinea pig foetus after maternal infection. Twelve female guinea pigs were infected with 100 cysts of the 76 K strain of Toxoplasma gondii by the oral route. Inoculation was performed 20 +/- 5 days (G20) or 40 +/- 5 days (G40) after the beginning of gestation. Gestational age was determined by progesterone assay. Maternal and foetal organ samples were taken 60 days after the beginning of gestation. Parasite loads (from placenta, amniotic fluid (AF), cord blood (CB), foetal brain, liver, lung and spleen) were assessed by a real-time PCR quantification using fluorescence resonance energy transfer (FRET) hybridization probes on the Light Cycler. Congenital transmission was proven by the presence of parasites in blood or tissue samples of the foetus in 84.6% (11/13) and 100% (16/16) of cases after inoculation on G20 and G40, respectively. The quantitative analysis of our results after inoculation at G20 and G40 has allowed us to determinate the positive parasitic loads as a function of the origin of the sample and the period of inoculation. The parasite loads expressed as log (parasite/g) were low in AF and CB samples: 1.49 +/- 0.50 and 1.05 +/- 0.10 at G20 and 1.21 +/- 0.36 and 1.20 +/- 0.42 at G40 respectively. In contrast the placenta and the different foetal tissues had higher parasite burdens: 2.89 +/- 0.54 to 5.30 +/- 0.51 at G20 and 2.81 +/- 0.71 to 3.65 +/- 0.59 at G40. All the placentae were positive for parasites even in the two cases with no proven transmission. Real time quantitative PCR using the hybridization probe was a very sensitive and reproducible technique to study the kinetics of congenital toxoplasmosis in the guinea pig model wich is close to that of humans.  相似文献   

15.
Strongyloides venezuelensis is a parasitic nematode that has been used as a model to study human and animal strongyloidiasis. In this study, we compared the sensitivity between traditional methodologies and PCR assay to characterize the dynamics of S. venezuelensis infection and its migration route in Lewis rats subcutaneously infected with 4000 L3. The dynamics of the infection was determined by counting the number of eggs and by detecting parasite deoxyribonucleic acid in faeces samples. Both techniques similarly detected the infection at day 6 after larvae inoculation. However, PCR performed with the genus primer showed higher sensitivity during the recovery phase. Histological analysis and PCR assay were then used to follow parasite tissue migration. S. venezuelensis migration route included the muscular fibers below the skin, the pulmonary alveoli and the small intestine vilosities. The sensitivity of these two techniques to detect parasite’s presence in these tissues was statistically similar.  相似文献   

16.
This study was designed to determine the role of the sensitization route and the spleen in the development of delayed-type hypersensitivity (DTH) to dengue virus in mice. DTH was measured by footpad swelling response. Strong but transient DTH was produced in cyclophosphamide (CY) pretreated mice sensitized subcutaneously (s.c.) or intravenously (i.v.) with dengue virus type 4. Subcutaneous inoculation of virus in incomplete Freund's adjuvant (IFA) further enhanced the DTH elicited. The time course of DTH generated by s.c. and i.v. sensitization were similar with the peak reactivity seen on day 6 after sensitization. Poor DTH was observed in mice given an i.p. inoculation even when CY and/or IFA were used. Intracerebral (i.c.) inoculation also sensitized mice poorly. Splenectomized mice showed enhanced DTH response when compared to intact mice. In contrast to intact mice, pretreatment of splenectomized mice with CY did not alter the DTH level. Splenectomized mice inoculated s.c. with virus in IFA showed poorer DTH than mice sensitized with virus alone.  相似文献   

17.
The organ tropism of MHV-A59, a murine coronavirus, was studied in 4-6 week-old C57BL/6 mice inoculated by different routes and with various amounts of virus. MHV-A59 caused hepatitis after intracerebral and intraperitoneal inoculation (two clearly artificial routes) and also after intranasal and intragastric inoculation (two routes more likely to mimic naturally acquired infection). For each route, the severity of hepatitis was dependent on the amount of virus inoculated. Significantly higher doses were needed to cause hepatitis by the intranasal or intragastric routes. We have shown previously that mice inoculated intracerebrally with MHV-A59 develop mild meningoencephalitis followed by chronic central nervous system (CNS) disease, characterized by primary demyelination (1). We extend these results here to show that acute CNS disease can be produced also by intranasal and intragastric inoculation, although much larger doses are needed as compared to intracerebral inoculation. Thus induction of demyelination, not only by the intracerebral route but also by the intranasal route, provides a useful model system to study virus-induced demyelination.  相似文献   

18.
It has now been shown that normal mice can be used as models for studying the early stages in the development of leprosy. Inoculation into the foot pads of mice of as few as 104 leprosy bacilli leads to infections which spread to distant sites via the blood stream and after two or more years give rise to granulomata and neural damage at the sites of inoculation. Where the tissue response had fully developed it reproduced exactly the histological features of human leprosy in the borderline range.  相似文献   

19.
Oral inoculation of BALB/c mice with infective larvae of Heligmosomoides polygyrus resulted in chronic infection characterized by the release of parasite eggs in the feces for several months. The actual number of eggs per gram of feces was dependent on the dose of the inoculum. Serum IgE in infected mice peaked at a level of greater than 70 micrograms/ml during Weeks 3 through 6 following inoculation, and high levels of IgE (greater than 40 micrograms/ml) persisted for over 14 weeks. Protective immune responses resulted in reduced egg production and the development of markedly fewer adult worms in the small intestines following a challenge inoculation. The role of CD4+ and CD8+ T cells in these responses was examined by depletion in vivo of either T cell subpopulation with rat mAb specific for the appropriate determinants. Mice treated with anti-CD4 during a primary infection had increased EPG which was due primarily to an increase in worm fecundity (eggs produced per adult female). A challenge inoculation of mice that had been cleared of the primary infection with an anthelmintic drug induced a protective response that reduced development of new adult worms by 70-80% and their fecundity by greater than 90%. This protective response was abrogated by injection of mice with anti-CD4. Serum IgE diminished when adult worms were removed after anthelmintic treatment. A more precipitous drop in serum IgE followed successive treatments of mice with an anthelmintic and anti-CD4. In addition, the anamnestic serum IgE response to a challenge inoculation was reduced by over 80% in anti-CD4-treated mice. Anti-CD8 treatment had no appreciable effect on the immunological or parasitological parameters measured following a challenge inoculation with H. polygyrus. Thus, CD4+ T cells regulate host protective immunity, worm fecundity, and IgE levels in an H. polygyrus infection. This experimental system may be particularly suitable for analysis of chronic nematode infections of humans and livestock because of the responsiveness of the parasite in vivo to changes in host immune function.  相似文献   

20.
Chagas disease, caused by infection with the protozoan parasite Trypanosoma cruzi, is a major public health problem in Central and South America. The pathogenesis of Chagas disease is complex and the natural course of infection is not completely understood. The recent development of bioluminescence imaging technology has facilitated studies of a number of infectious and non-infectious diseases. We developed luminescent T. cruzi to facilitate similar studies of Chagas disease pathogenesis. Luminescent T. cruzi trypomastigotes and amastigotes were imaged in infections of rat myoblast cultures, which demonstrated a clear correlation of photon emission signal strength to the number of parasites used. This was also observed in mice infected with different numbers of luminescent parasites, where a stringent correlation of photon emission to parasite number was observed early at the site of inoculation, followed by dissemination of parasites to different sites over the course of a 25-day infection. Whole animal imaging from ventral, dorsal and lateral perspectives provided clear evidence of parasite dissemination. The tissue distribution of T. cruzi was further determined by imaging heart, spleen, skeletal muscle, lungs, kidneys, liver and intestines ex vivo. These results illustrate the natural dissemination of T. cruzi during infection and unveil a new tool for studying a number of aspects of Chagas disease, including rapid in vitro screening of potential therapeutical agents, roles of parasite and host factors in the outcome of infection, and analysis of differential tissue tropism in various parasite-host strain combinations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号