首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Peptides》1987,8(3):543-558
Intact anterior pituitary tissue and primary anterior pituitary cultures were stained with 1:30,000 anti-TRH and 1:10,000 anti-GnRH using the peroxidase antiperoxidase immunocytochemical technique. Stains applied to serial ultrathin sections of intact pituitaries showed that TRH immunoreactivity could be localized in secretory granules of thyrotropes, gonadotropes and corticotropes whereas GnRH immunoreactivity was found only in gonadotropes and corticotropes. Long-term primary pituitary cultures were studied to remove the anterior pituitary cells from hypothalamic influences. In these cell populations both TRH and GnRH immunoreactivity persisted. In addition, quantification of the stained cells at the light microscopic level demonstrated that the volume fraction of TRH and GnRH immunoreactive cells remained constant up to 3 weeks of culture. Studies of serial ultrathin sections through cells from these cultures showed TRH or GnRH localized in secretory granules of cells that contained LH and ACTH, but not TSH. Both liquid and solid phase immunoabsorption specificity controls were used to validate the immunocytochemical stains. These studies suggest that the pituitary TRH and GnRH immunoreactivities may not be completely of hypothalamic origin, but may also be endogenous to a subpopulation of unique multihormonal pituitary cells.  相似文献   

2.
Effects of anti-thyrotropin-releasing hormone (TRH) anti-serum treatment during the neonatal period on the development of rat thyroid function were studied. On postnatal days 2 and 4, rats were administered anti-TRH anti-serum ip, and they were serially decapitated at the 4th, 8th and 12th week after birth. TRH, thyrotropin (TSH), thyroxine (T4) and 3,3',5-triiodothyronine (T3) were measured by radioimmunoassay. Immunoreactive TRH (ir-TRH) in the hypothalamus did not change significantly after anti-TRH anti-serum treatment, and plasma ir-TRH tended to decrease. The plasma ir-TRH and TSH responses to cold were significantly inhibited. The plasma TSH response to TRH was also significantly inhibited. The plasma basal TSH levels were significantly lower than in controls. The plasma T4 and T3 levels were found to be lower than those in the controls. Findings suggested that treatment with anti-TRH anti-serum during the neonatal period disturbed the development of rat thyroid function, inhibiting TRH release and altering thyrotroph sensitivity to TRH.  相似文献   

3.
Effects of orexin A on secretion of thyrotropin-releasing hormone (TRH) and thyrotropin (TSH) in rats were studied. Orexin A (50 microg/kg) was injected iv, and the rats were serially decapitated. The effects of orexin A on TRH release from the rat hypothalamus in vitro and on TSH release from the anterior pituitary in vitro were also investigated. TRH and thyroid hormone were measured by individual radioimmunoassays. TSH was determined by the enzyme-immunoassay method. The hypothalamic TRH contents increased significantly after orexin A injection, whereas its plasma concentrations tended to decrease, but not significantly. The plasma TSH levels decreased significantly in a dose-related manner with a nadir at 15 min after injection. The plasma thyroid hormone levels showed no changes. TRH release from the rat hypothalamus in vitro was inhibited significantly in a dose-related manner with the addition of orexin A. TSH release from the anterior pituitary in vitro was not affected with the addition of orexin A. The findings suggest that orexin A acts on the hypothalamus to inhibit TRH release.  相似文献   

4.
The effect of thyrotrophin-releasing hormone (TRH, 10(-7) M) on luteinizing hormone (LH) release from rat anterior pituitary cells was examined using organ and primary cell culture. The addition of TRH to the culture medium resulted in a slightly enhanced release of LH from the cultured pituitary tissues. However, the amount of LH release stimulated by TRH was not greater than that produced by luteinizing hormone-releasing hormone (LH-RH, 10(-7) M). Actinomycin D (2 X 10(-5) M) and cycloheximide (10(-4) M) had an inhibitory effect on the action of TRH on LH release. The inability of TRH to elicit gonadotrophin release from the anterior pituitary glands in vivo may partly be due to physiological inhibition of its action by other hypothalamic factor(s).  相似文献   

5.
The hypophysial portal vessels and anterior pituitary gland of adult male Wistar rats were exposed surgically. A hypophysial portal vessel was cannulated and infused for one minute with saline or thyrotrophin (TRH). Anterior pituitary glands were collected at 1,5,15,30 or 60 minutes after cessation of infusion, for light and electron microscopic examination. Before and immediately after cannulation of a portal vessel, a 1-ml sample of blood was collected at 1,5,15,30, or 60 minutes, from the femoral vein for radioimmunoassay (RIA) of growth hormone. Thyrotrophs from anterior pituitary glands of rats infused with TRH displayed emiocytic activity at all time-periods studied. Rough endoplasmic reticular (RER) cisternae were dilated at 15 minutes following infusion and remained dilated at 30 and 60 minutes. TRH was observed to stimulate emiocytic activity in most pituitary cell-types. Extensive dilations of RER cisternae were also observed in mammotrophs and gonadotrophs, but were not observed in somatotrophs or adrenocorticotrophs. The demonstration that thyrotrophs, mammotrophs, somatotrophs, and gonadotrophs respond to TRH suggests that some common features may be shared by these cells. Preliminary analysis of the RIA data show that TRH was potent in elevating radioimmunoassayable growth hormone levels. Significant increases (p less than 0.02) in plasma GH levels were present at the earlier time periods studied (1,5, and 15 minutes) following the infusion of TRH, but no at 30 or 60 minutes. These findings provide additional support for the non-specific action of TRH upon hte various adenohypophysial cell types, and demonstrate that TRH stimulates these cells by a direct action on the adenohypophysis.  相似文献   

6.
P H Li 《Life sciences》1987,41(13):1645-1650
This study investigated the direct effect of 3-hydroxy-4-1(H)-pyridone (DHP), the breakdown product of mimosine in the rumen, on thyroid-stimulating hormone (TSH) secretion by perifusion of rat anterior pituitary fragments. During a 2-h perifusion with thyrotropin-releasing hormone (TRH), the total release of TSH increased linearly (P less than 0.05, r = 0.966) with increasing concentration of TRH from 1 to 100 ng/ml. The release was maximal at 100 ng/ml. There were no differences in total basal TSH release among control and DHP-treated pituitary fragments. DHP at concentrations of 1, 10, and 100 micrograms/ml had no significant effect on the TSH response to TRH. However, DHP at the concentration of 1 mg/ml significantly suppressed the TSH response to TRH administered continuously or as a 10-min pulse. These results suggest that DHP modulates the pituitary thyrotroph's response to TRH.  相似文献   

7.
K Fujiwara  T Saita 《FEBS letters》1986,202(2):197-201
A novel enzyme immunoassay (EIA) for thyrotropin-releasing hormone (TRH) was developed which used N-(4-diazophenyl)maleimide (DPM) as a new heterobifunctional agent capable of cross-linking TRH to mercaptosuccinyl bovine serum albumin and to beta-D-galactosidase. The resulting conjugates act as the immunogen producing anti-TRH serum in rabbits and the enzyme marker of TRH in the EIA, respectively. This EIA with a double-antibody technique was sensitive and reproducible in measuring TRH at concentrations as low as 50 pg per tube, and monospecific to the hormone showing no cross-reactivity with the hormone analogue L-pGlu-L-His-L-Pro and TRH constituents. Using this assay, the distribution of immunoreactive TRH in the brain was determined easily in rats. The use of DPM should provide a valuable new method for developing EIA hitherto possible for other peptide hormones containing neither a free carboxy nor a free amino group, using imidazole, phenolic, and indole group(s) of the amino acid as a reaction site.  相似文献   

8.
To study phosphorylation of the endogenous type I thyrotropin-releasing hormone receptor in the anterior pituitary, we generated phosphosite-specific polyclonal antibodies. The major phosphorylation site of receptor endogenously expressed in pituitary GH3 cells was Thr(365) in the receptor tail; distal sites were more phosphorylated in some heterologous models. beta-Arrestin 2 reduced thyrotropin-releasing hormone (TRH)-stimulated inositol phosphate production and accelerated internalization of the wild type receptor but not receptor mutants where the critical phosphosites were mutated to Ala. Phosphorylation peaked within seconds and was maximal at 100 nm TRH. Based on dominant negative kinase and small interfering RNA approaches, phosphorylation was mediated primarily by G protein-coupled receptor kinase 2. Phosphorylated receptor, visualized by immunofluorescence microscopy, was initially at the plasma membrane, and over 5-30 min it moved to intracellular vesicles in GH3 cells. Dephosphorylation was rapid (t((1/2)) approximately 1 min) if agonist was removed while receptor was at the surface. Dephosphorylation was slower (t((1/2)) approximately 4 min) if agonist was withdrawn after receptor had internalized. After agonist removal and dephosphorylation, a second pulse of agonist caused extensive rephosphorylation, particularly if most receptor was still on the plasma membrane. Phosphorylated receptor staining was visible in prolactin- and thyrotropin-producing cells in rat pituitary tissue from untreated rats and much stronger in tissue from animals injected with TRH. Our results show that the TRH receptor can rapidly cycle between a phosphorylated and nonphosphorylated state in response to changing agonist concentrations and that phosphorylation can be used as an indicator of receptor activity in vivo.  相似文献   

9.
10.
The effect of intratesticular administration of thyrotropin-releasing hormone (TRH) and anti-TRH antiserum on steroidogenesis was studied in immature and adult rats. In 9-day-old animals local administration of the neuropeptide resulted in an increase in basal testosterone secretion in vitro. Similar treatment of 15-day-old rats suppressed hCG-stimulated testosterone secretion with no change in basal testosterone production. In both immature groups the treatment did not affect serum testosterone concentration. By contrast, in adults TRH decreased serum testosterone level, but did not influence basal and hCG-stimulated testosterone secretion. Both in immature and adult rats, the changes in steroidogenesis were evident 1 hour posttreatment. Five days after the administration of anti-TRH antiserum into the remaining testis of immature rats subjected to hemicastration just prior to the antiserum treatment, the alterations in steroidogenesis were opposite to those detected after treatment with TRH. In 9-day-old rats the antiserum suppressed steroidogenesis, while in 15-day-old animals it stimulated testosterone secretion. The results suggest that testicular TRH might exert a local action on testicular steroidogenesis, and the effect is age-dependent.  相似文献   

11.
Chicks two and ten days-of-age respond to a wide range of thyrotropin releasing hormone (TRH) dosages as measured by thyroid uptake of 32P. The duration of hormone and 32P action is important. Excellent responses were obtained with the injection of 1.0 μCi32P at one hour and TRH either at one or four hours before autopsy in both two-day and ten-day-old birds. The 32P uptake in the thyroid glands was increased by doses of hormone which ranged from 40 nanograms to 125,000 nanograms and was bimodal. Analysis of the data when calculated using log10 of dose was best accomplished by the use of 5th-degree polynomial equations. It is suggested that the bimodal response is a result of a dual action of TRH. First, TRH initiates the release of stored TSH from the anterior pituitary; and second, TRH stimulates the secretion of newly synthesized TSH by the anterior pituitary.  相似文献   

12.
Effects of nociceptin on thyrotropin (TSH) and thyrotropin-releasing hormone (TRH) secretion in rats were studied. Nociceptin (150 microgram/kg) was injected intravenously and rats were serially decapitated after the injection. The effects of nociceptin on TRH release from the hypothalamus and TSH release from the anterior pituitary in vitro were also investigated. TRH and thyroid hormones were measured by individual radioimmunoassays. TSH was determined by enzyme immunoassay. TRH contents in the hypothalamus decreased significantly after nociceptin injection, whereas plasma TRH concentrations showed no changes. Plasma TSH concentrations increased significantly in a dose-related manner. The TRH release from the hypothalamus was enhanced significantly in a dose-related manner with the addition of nociceptin. The TSH release from the anterior pituitary in vitro was not affected by the addition of nociceptin. The plasma thyroxine and 3,3',5-triiodothyronine levels did not change significantly after nociceptin administration. The inactivation of TRH by plasma or hypothalamus in vitro after nociceptin injection did not differ from that of controls. The findings suggest that nociceptin acts on the hypothalamus to stimulate TRH and TSH secretion.  相似文献   

13.
Hormone-treated CHO cells exit the cell cycle in the G2 phase   总被引:1,自引:0,他引:1  
In order to localize and identify receptor structures, the binding of radiolabeled thyrotropin releasing hormone (TRH) to thyrotropin (TSH)-secreting cells from rat and bovine anterior pituitaries and from a mouse TSH-secreting tumor was studied in vitro. The binding of TRH to rat anterior pituitaries increased linearly with the log of TRH concentration in the incubation medium. Plasma membranes were the only subcellular fractions isolated after incubation from bovine anterior pituitary and the TSH tumor which bound detectable quantities of TRH.  相似文献   

14.
The effect of thyrotrophin releasing hormone (TRH) or human pancreatic growth hormone releasing factor (hpGRF) on growth hormone (GH) release was studied in both dwarf and normal Rhode Island Red chickens with a similar genotype except for a sex-linked dw gene. Both TRH (10 micrograms/kg) and hpGRF (20 micrograms/kg) injections stimulated plasma GH release within 15 min in young and adult chickens. The increase in GH release was higher in young cockerels than that in adult chickens. The age-related decline in the response to TRH stimulation was observed in both strains, while hpGRF was a still potent GH-releaser in adult chickens. The maximal and long acting response was observed in young dwarf chickens, suggesting differences in GH pools releasable by TRH and GRF in the anterior pituitary gland. The pituitary gland was stimulated directly by perifusion with hpGRF (1 microgram/ml and 10 micrograms/ml) or TRH (1 microgram/ml). Repeated perifusion of GRF at 40 min intervals blunted further increase in GH release, but successive perifusion with TRH stimulated GH release. The results suggest the possibility that desensitization to the effects of hpGRF occurs in vitro and that the extent of response depends on the number of receptors for hpGRF or TRH and/or the amount of GH stored in the pituitary gland.  相似文献   

15.
The role of thyrotropin-releasing hormone (TRH) in the secretion of TSH from the anterior pituitary was investigated in rats by active and passive immunization with TRH. The plasma TSH response to propylthiouracil (PTU) in TRH-bovine serum albumin (BSA)-immunized rats was significantly lower than that of BSA-immunized or non-immunized rats. Similarly, the increased plasma TSH level following PTU treatment was significantly suppressed after iv injection of antiserum to TRH. However, the decline in plasma TSH levels was not complete. The results of the present study indicate, at least in part, the physiological significance of endogenous TRH in the regulation of pituitary TSH secretion.  相似文献   

16.
Ecto-peptidases modulate the action of peptides in the extracellular space. The relationship between peptide receptor and ecto-peptidase localization, and the physiological role of peptidases is poorly understood. Current evidence suggests that pyroglutamyl peptidase II (PPII) inactivates neuronally released thyrotropin-releasing hormone (TRH). The impact of PPII localization in the anterior pituitary on the endocrine activities of TRH is unknown. We have studied whether PPII influences TRH signaling in anterior pituitary cells in primary culture. In situ hybridization (ISH) experiments showed that PPII mRNA was expressed only in 5-6% of cells. ISH for PPII mRNA combined with immunocytochemistry for prolactin, beta-thyrotropin, or growth hormone, showed that 66% of PPII mRNA expressing cells are lactotrophs, 34% somatotrophs while none are thyrotrophs. PPII activity was reduced using a specific phosphorothioate antisense oligodeoxynucleotide or inhibitors. Compared with mock or scrambled oligodeoxynucleotide-treated controls, knock-down of PPII expression by antisense targeting increased TRH-induced release of prolactin, but not of thyrotropin. Similar data were obtained with either a transition-state or a tight binding inhibitor. These results demonstrate that PPII expression in lactotrophs coincides with its ability to control prolactin release. It may play a specialized role in TRH signaling in the anterior pituitary. Anterior pituitary ecto-peptidases may fulfill unique functions associated with their restricted cell-specific expression.  相似文献   

17.
Synthetic thyrotropin-releasing hormone (TRH) tartrate monohydrate was administered by rapid intravenous injection to nine normal males. Plasma thyroid-stimulating hormone (TSH), luteinizing hormone (LH) and follicle-stimulating hormone (FSH) were measured before and at selected periods after TRH injection. The mean plasma TSH value immediately prior to TRH injection was 3.5 muU/ml and the level 15 min after injection was 14.8 muU/ml. The mean plasma LH value immediately prior to TRH injection was 8.0 mIU/ml and the level 15 min after injection was 15.0 mIU/ml. The latter elevation was statistically significant (p less than 0.01), although it was just above the upper normal range. The mean plasma FSH value immediately prior to TRH injecion was 7.7 mIU/ml, and a significant difference was not observed after TRH administration. These results revealed that synthetic TRH tartrate monohydrate influenced the release of LH from the anterior pituitary.  相似文献   

18.
Previous studies have demonstrated immunocytochemical staining for beta chains of thyroid stimulating hormone (TSH-beta) in rough endoplasmic reticulum of pituitary cells hypertrophied after thyroidectomy ("thyroidectomy cells") (Moriarty CG(1976): J Histochem Cytochem (24:846; Moriarty GC, Tobin RB (1976): J Histochem Cytochem 24:1140). Here we report the localization of thyrotropin releasing hormone (TRH) in serial sections of the same pituitaries to determine if it could be found at similar sites. No staining for TRH was found in hypertrophied TSH cells formed 42 days after the surgery, or after 14, 34, and 70 days of propylthiouracil (PTU) treatment. The loss in immunostaining in the PTU-treated rats was correlated with radioimmunoassay (RIA) measurements that showed a 65% reduction in anterior pituitary TRH content after 34, 70, and 98 days of PTU treatment (from 22.9--7.8 pg/mg wet wt) and a 50% reduction in TSH content after 34 days of treatment. When thyroxine was administered to hypothyroid rats for 3 days before death, our previous studies had demonstrated intense staining for TSH in granules inside the rough endoplasmic reticulum. In this study, the radioimmunoassay showed that TSH content rose dramatically in the hypothyroid animals treated with PTU for 77 days and thyroxine for 2 days before death (from 8.5--64.1 mU/mg wet wt); however, the rise in TRH content was minimal (5.8--9.8 pg/mg wet wt). The immunocytochemical stain for TRH correlated well with the RIA showing a weak reaction mainly on small granules in the cytoplasm. No reaction for TRH was found in rough endoplasmic reticulum. These results suggest that TRH and TSH storage sites are dissimilar in the hypothyroid rat. The presence of stain for TRH in granules in the cytoplasm suggests that it might play a role in the storage or packaging of TSH. Its absence in profiles of rough endoplasmic reticulum staining intensely for TSH suggests that it is not synthesized at this site. No definite conclusions about its origin can be drawn at this time.  相似文献   

19.
Hypothalamic thyrotropin-releasing hormone (TRH) stimulates thyroid-stimulating hormone (TSH) secretion from the anterior pituitary. TSH then initiates thyroid hormone (TH) synthesis and release from the thyroid gland. Although opposing TRH and TH inputs regulate the hypothalamic-pituitary-thyroid axis, TH negative feedback is thought to be the primary regulator. This hypothesis, however, has yet to be proven in vivo. To elucidate the relative importance of TRH and TH in regulating the hypothalamic-pituitary-thyroid axis, we have generated mice that lack either TRH, the beta isoforms of TH receptors (TRbeta KO), or both (double KO). TRbeta knock-out (KO) mice have significantly higher TH and TSH levels compared with wild-type mice, in contrast to double KO mice, which have reduced TH and TSH levels. Unexpectedly, hypothyroid double KO mice also failed to mount a significant rise in serum TSH levels, and pituitary TSH immunostaining was markedly reduced compared with all other hypothyroid mouse genotypes. This impaired TSH response, however, was not due to a reduced number of pituitary thyrotrophs because thyrotroph cell number, as assessed by counting TSH immunopositive cells, was restored after chronic TRH treatment. Thus, TRH is absolutely required for both TSH and TH synthesis but is not necessary for thyrotroph cell development.  相似文献   

20.
To investigate the presence of TRH mRNA in the human anterior pituitary tissue, total RNA from human normal and tumoral anterior pituitary, hypothalamus (positive control) and muscle tissues (negative control) was reverse transcribed (RT) to the first strand of cDNA. RT products were then amplified by polymerase chain reaction (PCR) using a set of three exon-specific primers (two external 5' and 3' primers and one internal 3' primer) for a target sequence of the TRH gene including an intronic sequence of about 650 base pairs (bp). Southern analysis of the RT-PCR products specifically hybridizing with a 45-mer TRH probe showed two bands of the predicted sizes (399 and 351 bp) far more intense in hypothalamus than in normal and tumoral anterior pituitary tissue. The 399 and 351 bp RT-PCR products contained the BglII enzyme restriction site included in the TRH cDNA sequences spanned by the primers and the two respective digested fragments which were, as predicted, 337 and 289 bp long, hybridized with the TRH probe. Based on these results, we can conclude that the RT-PCR products generated from RNA tissue were the target TRH sequences in the human normal and tumoral anterior pituitary tissue as well as in the hypothalamus. Our data imply TRH gene expression in the human anterior pituitary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号