首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
FSH is critical for normal reproductive function in both males and females. Activin, a member of the TGFbeta family of growth factors, is an important regulator of FSH expression, but little is known about the molecular mechanisms through which it acts. We used transient transfections into the immortalized gonadotrope cell line LbetaT2 to identify three regions (at -973/-962, -167, and -134) of the ovine FSH beta-subunit gene that are required for full activin response. All three regions contain homology to consensus binding sites for Smad proteins, the intracellular mediators of TGFbeta family signaling. Mutation of the distal site reduces activin responsiveness, whereas mutation of either proximal site profoundly disrupts activin regulation of the FSHbeta gene. These sites specifically bind LbetaT2 nuclear proteins in EMSAs, and the -973/-962 site binds Smad4 protein. Interestingly, the protein complex binding to the -134 site contains Smad4 in association with the homeodomain proteins Pbx1 and Prep1. Using glutathione S-transferase interaction assays, we demonstrate that Pbx1 and Prep1 interact with Smads 2 and 3 as well. The two proximal activin response elements are well conserved across species, and Pbx1 and Prep1 proteins bind to the mouse gene in vivo. Furthermore, mutation of either proximal site abrogates activin responsiveness of a mouse FSHbeta reporter gene as well, confirming their functional conservation. Our studies provide a basis for understanding activin regulation of FSHbeta gene expression and identify Pbx1 and Prep1 as Smad partners and novel mediators of activin action.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
sonic hedgehog (shh) is expressed in anterior endoderm, where it is required to repress pancreas gene expression and to pattern the endoderm, but the pathway controlling endodermal shh expression is unclear. We find that expression of meis3, a TALE class homeodomain gene, coincides with shh expression in the endoderm of zebrafish embryos. Using a dominant negative construct or anti-sense morpholino oligos (MOs) to disrupt meis3 function, we observe ectopic insulin expression in anterior endoderm. This phenotype is also observed when meis3 MOs are targeted to the endoderm, suggesting that meis3 acts within the endoderm to restrict insulin expression. We also find that meis3 is required for endodermal shh expression, indicating that meis3 acts upstream of shh to restrict insulin expression. Loss of pbx4, a TALE gene encoding a Meis cofactor, produces the same phenotype as loss of meis3, consistent with Meis3 acting in a complex with Pbx4 as reported in other systems. Lastly, we observe a progressive anterior displacement of endoderm-derived organs upon disruption of meis3 or pbx4, apparently as a result of underdevelopment of the pharyngeal region. Our data indicate that meis3 and pbx4 regulate shh expression in anterior endoderm, thereby influencing patterning and growth of the foregut.  相似文献   

11.
12.
13.
14.
15.
16.
Using radioimmuno- and ribonuclease protection assays, we examined the effects of gonadotropin-releasing hormone and its analogs on the growth hormone mRNA level and growth hormone secretion in common carp (Cyprinus carpio) pituitary fragments with static incubation. After a 24 h treatment, sGnRH ([Trp(7),Leu(8)]-LHRH) and sGnRH-A ([D-Arg(6),Pro(9)]-LHRH) (0.1 nM-1 microM) elevated the GH mRNA level and stimulated the GH secretion in a dose-dependent manner, with a higher potency for sGnRH-A. In a time-course experiment, the function of sGnRH and sGnRH-A (10 nM) on GH secretion was observed after 6 h incubation, while no action on the GH mRNA level were noted until 12 h after treatment. Comparing mammalian GnRH, avian GnRH and piscine GnRH, sGnRH and sGnRH-A showed the highest potency in increasing GH mRNA level and GH-release, followed by cGnRH-II ([His(5),Tyr(8)]-LHRH), and finally LHRH and LHRH-A([D-Trp(6), Pro(9)]-LHRH). These findings, taken together, suggest that GnRH not only can influence GH release, but also play a role in the regulation of GH synthesis.  相似文献   

17.
Vernalization and photoperiod (PP) responses are developmental mechanisms that allow plants to synchronize their growth and reproductive cycles with the seasonal weather changes. Vernalization requirement has been shown to influence the length of time that low-temperature (LT)-induced genes are up-regulated when cereal species are exposed to acclimating temperatures. The objective of the present study was to determine whether expression of LT-induced Wcs and Wcor gene families is also developmentally regulated by PP response. The LT-tolerant, highly short-day (SD)-sensitive barley (Hordeum vulgare L. cv Dicktoo) was subjected to 8-h SD and 20-h long-day PPs at cold-acclimating temperatures over a period of 70 d. A delay in transition from the vegetative to the reproductive stage under SD resulted in an increased level and longer retention of LT tolerance. Similar WCS and WCOR protein homologs were expressed, but levels of expression were much higher in plants acclimated under SD, indicating that the poor LT tolerance of long-day plants was the result of an inability to maintain LT-induced genes in an up-regulated state. These observations indicate that the PP and vernalization genes influence the expression of LT-induced genes in cereals through separate pathways that eventually converge to activate genes controlling plant development. In both instances, the delay in the transition from the vegetative to the reproductive stage produces increased LT tolerance that is sustained for a longer period of time, indicating that the developmental genes determine the duration of expression of LT-induced structural genes.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号