首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Giantin interacts with both the small GTPase Rab6 and Rab1   总被引:1,自引:0,他引:1  
The interaction of small GTPases of the Rab family and coiled coil proteins of the golgin family has been reported for example for the Rab1 GTPase and p115, GM130 and Giantin. We now show that Rab6A, a GTPase that controls retrograde trafficking within the Golgi back to the endoplasmic reticulum is also able to bind to Giantin in vivo and in vitro pointing to an interesting complex formation between Giantin and two different Rab GTPases. In Saccharomyces cerevisiae a genetic interaction between Ypt1 and Ypt6 has already been demonstrated, but in this paper we were able to describe that the mammalian Rab GTPases are able to interact on the same golgin protein, Giantin.  相似文献   

2.
The xeroderma pigmentosum group A protein (XPA) plays a central role in nucleotide excision repair (NER). To identify proteins that bind to XPA, we screened a HeLa cDNA library using the yeast two-hybrid system. Here we report a novel cytoplasmic GTP-binding protein, designated XPA binding protein 1 (XAB1). The deduced amino acid sequence of XAB1 consisted of 374 residues with a molecular weight of 41 kDa and an isoelectric point of 4.65. Sequence analysis revealed that XAB1 has four sequence motifs G1–G4 of the GTP-binding protein family in the N-terminal half. XAB1 also contains an acidic region in the C-terminal portion. Northern blot analysis showed that XAB1 mRNA is expressed ubiquitously, and immunofluorescence analysis revealed that XAB1 is localized mainly in the cytoplasm. Consistent with the GTP-binding motif, purified recombinant XAB1 protein has intrinsic GTPase activity. Using the yeast two-hybrid system, we elucidated that XAB1 binds to the N-terminal region of XPA. The deletion of five amino acids, residues 30–34 of XPA, required for nuclear localization of XPA abolished the interaction with XAB1. These results suggest that XAB1 is a novel cytoplasmic GTPase involved in nuclear localization of XPA.  相似文献   

3.
Makokha M  Hare M  Li M  Hays T  Barbar E 《Biochemistry》2002,41(13):4302-4311
The interactions of three subunits of cytoplasmic dynein from Drosophila melanogaster, LC8, Tctex-1, and the N-terminal domain of IC74 (N-IC74, residues 1-289), were characterized in vitro by affinity methods, limited proteolysis, and circular dichroism spectroscopy. These subunits were chosen for study because they are presumed to promote the assembly of the complex and to be engaged in the controlled binding and release of cargo. Limited proteolysis and mass spectrometry of N-IC74 in the presence of LC8 and Tctex-1 localized binding of Tctex-1 to the vicinity of K104 and K105, and localized binding of LC8 to the region downstream of K130. Circular dichroism, fluorescence, sedimentation velocity, and proteolysis studies indicate that N-IC74 has limited secondary and tertiary structure at near physiological solution conditions. Upon addition of LC8, N-IC74 undergoes a significant conformational change from largely unfolded to a more ordered structure. This conformational change is reflected in increased global protection of N-IC74 from proteolytic digestion following the interaction, and in a significant change in the CD signal. A smaller but reproducible change in the CD spectra was observed upon Tctex-1 binding as well. The increased structure introduced into N-IC74 upon light chain binding suggests a mechanism by which LC8 and Tctex-1 may regulate the assembly of the dynein complex.  相似文献   

4.
Num1p, a cortical 313-kD protein, controls cytoplasmic microtubule (cMT) functions and nuclear migration through the bud neck in anaphase cells. A green fluorescent protein (GFP)-Num1p fusion protein localizes at the bud tip and the distal mother pole of living cells, apparently forming cMT capture sites at late anaphase. In addition, galactose-induced GFP-Num1p is seen at the bud neck and in lateral regions of the mother cortex. The bud tip location of Num1p depends on Bni1p but does not require Kar9p, Dyn1p, or cMTs, whereas cMT contacts with polar Num1p dots are reduced in cells lacking Dyn1p. Num1p associates with the dynein intermediate chain Pac11p in the presence of Dyn1p, and with the alpha-tubulin Tub3p, as shown by coimmune precipitation of tagged proteins. Num1p also forms a complex with Bni1p and Kar9p, although Num1p is not required for Bni1p- and Kar9p-dependent nuclear migration to the bud neck in preanaphase cells.Our data suggest that Num1p controls nuclear migration during late anaphase by forming dynein-interacting cortical cMT capture sites at both cellular poles. In addition, Num1p may transiently cooperate with an associated Bni1p-Kar9p complex at the bud tip of early anaphase cells.  相似文献   

5.
Macroautophagy is a mechanism of degradation of cytoplasmic components in all eukaryotic cells. In macroautophagy, cytoplasmic components are wrapped by double-membrane structures called autophagosomes, whose formation involves unique membrane dynamics, i.e., de novo formation of a double-membrane sac called the isolation membrane and its elongation. However, the precise regulatory mechanism of isolation membrane formation and elongation remains unknown. In this study, we showed that Golgi-resident small GTPase Rab33B (and Rab33A) specifically interacts with Atg16L, an essential factor in isolation membrane formation, in a guanosine triphosphate-dependent manner. Expression of a GTPase-deficient mutant Rab33B (Rab33B-Q92L) induced the lipidation of LC3, which is an essential process in autophagosome formation, even under nutrient-rich conditions, and attenuated macroautophagy, as judged by the degradation of p62/sequestosome 1. In addition, overexpression of the Rab33B binding domain of Atg16L suppressed autophagosome formation. Our findings suggest that Rab33 modulates autophagosome formation through interaction with Atg16L.  相似文献   

6.
The minus-ended microtubule motor cytoplasmic dynein contains a number of low molecular weight light chains including the 14-kDa Tctex-1. The assembly of Tctex-1 in the dynein complex and its function are largely unknown. Using partially deuterated, (15)N,(13)C-labeled protein samples and transverse relaxation-optimized NMR spectroscopic techniques, the secondary structure and overall topology of Tctex-1 were determined based on the backbone nuclear Overhauser effect pattern and the chemical shift values of the protein. The data showed that Tctex-1 adopts a structure remarkably similar to that of the 8-kDa light chain of the motor complex (DLC8), although the two light chains share no amino acid sequence homology. We further demonstrated that Tctex-1 binds directly to the intermediate chain (DIC) of dynein. The Tctex-1 binding site on DIC was mapped to a 19-residue fragment immediately following the second alternative splicing site of DIC. Titration of Tctex-1 with a peptide derived from DIC, which contains a consensus sequence R/KR/KXXR/K found in various Tctex-1 target proteins, indicated that Tctex-1 binds to its targets in a manner similar to that of DLC8. The experimental results presented in this study suggest that Tctex-1 is likely to be a specific cargo adaptor for the dynein motor complex.  相似文献   

7.
To express the function encoded in its genome, the herpes simplex virus 1 capsid-tegument structure released by deenvelopment during entry into cells must be transported retrograde to the nuclear pore where viral DNA is released into the nucleus. This path is essential in the case of virus entering axons of dorsal root ganglia. The objective of the study was to identify the viral proteins that may be involved in the transport. We report the following findings. (i) The neuronal isoform of the intermediate chain (IC-1a) of the dynein complex pulled down, from lysates of [(35)S]methionine-labeled infected cells, two viral proteins identified as the products of U(L)34 and U(L)31 open reading frames, respectively. U(L)34 protein is a virion protein associated with cellular membranes and phosphorylated by the viral kinase U(S)3. U(L)31 protein is a largely insoluble, evenly dispersed nuclear phosphoprotein required for optimal processing and packaging of viral DNA into preformed capsids. Reciprocal pulldown experiments verified the interaction of IC-1a and U(L)34 protein. In similar experiments, U(L)34 protein was found to interact with U(L)31 protein and the major capsid protein ICP5. (ii) To determine whether U(L)34 protein is transported to the nuclear membrane, a requirement if it is involved in transport, the U(L)34 protein was inserted into a baculovirus vector under the cytomegalovirus major early promoter. Cells infected with the recombinant baculovirus expressed U(L)34 protein in a dose-dependent manner, and the U(L)34 protein localized primarily in the nuclear membrane. An unexpected finding was that U(L)34-expressing cells showed a dissociation of the inner and outer nuclear membranes reminiscent of the morphologic changes seen in cells productively infected with herpes simplex virus 1. U(L)34, like many other viral proteins, may have multiple functions expressed both early and late in infection.  相似文献   

8.
The small GTPase Rab6 is a key regulator in the retrograde transfer from endosomes via the Golgi to the ER. Three isoforms of Rab6 have been identified, the ubiquitously expressed Rab6A and Rab6A', and the brain specific Rab6B. Recent studies have shown that Rab6A' is the major isoform regulating this retrograde transport. Cytoplasmic dynein is the main motor protein complex for this transport. Dynein consists of two heavy chains, two intermediate chains, four light intermediate chains and several light chains, called roadblock/LC7 proteins or DYNLRB proteins. In mammalian cells two light chain isoforms have been identified, DYNLRB1 and DYNLRB2. We here show with yeast-two-hybrid, co-immunoprecipitation and pull down studies that DYNLRB1 specifically interacts with all three Rab6 isoforms and co-localises at the Golgi. This is the first example of a direct interaction between Rab6 isoforms and the dynein complex. Pull down experiments showed further preferred association of DYNLRB1 with GTP-bound Rab6A and interestingly GDP-bound Rab6A' and Rab6B. In addition DYNLRB1 was found in the Golgi apparatus where it co-localises with EYFP-Rab6 isoforms. DYNLRB is a putative modulator of the intrinsic GTPase activity of GTP-binding proteins. In vitro we were not able to reproduce this effect on Rab6 GTPase activity.  相似文献   

9.
10.
11.
12.
Pericentrin is a conserved protein of the centrosome involved in microtubule organization. To better understand pericentrin function, we overexpressed the protein in somatic cells and assayed for changes in the composition and function of mitotic spindles and spindle poles. Spindles in pericentrin-overexpressing cells were disorganized and mispositioned, and chromosomes were misaligned and missegregated during cell division, giving rise to aneuploid cells. We unexpectedly found that levels of the molecular motor cytoplasmic dynein were dramatically reduced at spindle poles. Cytoplasmic dynein was diminished at kinetochores also, and the dynein-mediated organization of the Golgi complex was disrupted. Dynein coimmunoprecipitated with overexpressed pericentrin, suggesting that the motor was sequestered in the cytoplasm and was prevented from associating with its cellular targets. Immunoprecipitation of endogenous pericentrin also pulled down cytoplasmic dynein in untransfected cells. To define the basis for this interaction, pericentrin was coexpressed with cytoplasmic dynein heavy (DHCs), intermediate (DICs), and light intermediate (LICs) chains, and the dynamitin and p150(Glued) subunits of dynactin. Only the LICs coimmunoprecipitated with pericentrin. These results provide the first physiological role for LIC, and they suggest that a pericentrin-dynein interaction in vivo contributes to the assembly, organization, and function of centrosomes and mitotic spindles.  相似文献   

13.
Human EB1 is a highly conserved protein that binds to the carboxyl terminus of the human adenomatous polyposis coli (APC) tumor suppressor protein [1], a domain of APC that is commonly deleted in colorectal neoplasia [2]. EB1 belongs to a family of microtubule-associated proteins that includes Schizosaccharomyces pombe Mal3 [3] and Saccharomyces cerevisiae Bim1p [4]. Bim1p appears to regulate the timing of cytokinesis as demonstrated by a genetic interaction with Act5, a component of the yeast dynactin complex [5]. Whereas the predominant function of the dynactin complex in yeast appears to be in positioning the mitotic spindle [6], in animal cells, dynactin has been shown to function in diverse processes, including organelle transport, formation of the mitotic spindle, and perhaps cytokinesis [7] [8] [9] [10]. Here, we demonstrate that human EB1 can be coprecipitated with p150(Glued), a member of the dynactin protein complex. EB1 was also found associated with the intermediate chain of cytoplasmic dynein (CDIC) and with dynamitin (p50), another component of the dynactin complex, but not with dynein heavy chain, in a complex that sedimented at approximately 5S in a sucrose density gradient. The association of EB1 with members of the dynactin complex was independent of APC and was preserved in the absence of an intact microtubule cytoskeleton. The molecular interaction of EB1 with members of the dynactin complex and with CDIC may be important for microtubule-based processes.  相似文献   

14.
The mechanochemical forces that move and position intracellular organelles and their intermediates in eukaryotic cells are provided by molecular motor proteins which include the cytoplasmic dynein-1 motor complex. Recently, we identified the Rab11 GTPase effector protein Rab11-FIP3 (henceforth, FIP3) as a novel binding-partner for dynein light intermediate chain 1 (DLIC-1, gene symbol DYNC1LI1), a subunit of cytoplasmic dynein-1. Here, we show that FIP3 also binds the dynein light intermediate chain 2 subunit (DLIC-2, gene symbol DYNC1LI2). We show that like DLIC-1, DLIC-2 binds the amino-terminal 435 amino acids of FIP3 and that FIP3 links Rab11a to DLIC-2. We also show that FIP3 recruits DLIC-2 onto membranes and that DLIC-2 is necessary for the accumulation of endocytosed-transferrin (Tfn) at the pericentrosomal endosomal-recycling compartment (ERC). Finally, we demonstrate that overexpression of FIP3 fragments the Golgi complex by sequestering cytoplasmic dynein-1. In conclusion, we have identified FIP3 as the first membrane-associated interacting-partner for DLIC-2 and propose that this interaction serves to control endosomal trafficking from sorting endosomes to the ERC.  相似文献   

15.
Cytoplasmic dynein is the major minus-end directed microtubule-based motor in eukaryotic cells. It is composed of a number of different subunits including three light chain families: Tctex1, LC8, and roadblock. The incorporation of the roadblock light chains into the cytoplasmic dynein complex had not been determined. There are two roadblock genes in mammals, ROBL-1 and ROBL-2. We find that both members of the roadblock family bind directly to all of the intermediate chain isoforms of mammalian cytoplasmic dynein. This was determined with three complementary approaches. A yeast two-hybrid assay demonstrated that both roadblock light chains interact with intermediate chain isoforms from the IC74-1 and IC74-2 genes in vivo. This was confirmed in vitro with both a solid phase blot overlay assay and a solution-binding assay. The roadblock-binding domain on the intermediate chain was mapped to an approximately 72 residue region. The binding domain is downstream of each of the two alternative splice sites in the intermediate chains. This location is consistent with the finding that both roadblock-1 and roadblock-2 show no binding specificity for a single IC74-1 or IC74-2 intermediate chain isoform. In addition, this roadblock-binding domain is significantly downstream from both the Tctex1- and LC8-binding sites, supporting the hypothesis that multiple light chain family members can bind to the same intermediate chain.  相似文献   

16.
The ectodomain shedding of syndecan-1, a major cell surface heparan sulfate proteoglycan, modulates molecular and cellular processes central to the pathogenesis of inflammatory diseases. Syndecan-1 shedding is a highly regulated process in which outside-in signaling accelerates the proteolytic cleavage of syndecan-1 ectodomains at the cell surface. Several extracellular agonists that induce syndecan-1 shedding and metalloproteinases that cleave syndecan-1 ectodomains have been identified, but the intracellular mechanisms that regulate syndecan-1 shedding are largely unknown. Here we examined the role of the syndecan-1 cytoplasmic domain in the regulation of agonist-induced syndecan-1 shedding. Our results showed that the syndecan-1 cytoplasmic domain is essential because mutation of invariant cytoplasmic Tyr residues abrogates ectodomain shedding, but not because it is Tyr phosphorylated upon shedding stimulation. Instead, our data showed that the syndecan-1 cytoplasmic domain binds to Rab5, a small GTPase that regulates intracellular trafficking and signaling events, and this interaction controls the onset of syndecan-1 shedding. Syndecan-1 cytoplasmic domain bound specifically to Rab5 and preferentially to inactive GDP-Rab5 over active GTP-Rab5, and shedding stimulation induced the dissociation of Rab5 from the syndecan-1 cytoplasmic domain. Moreover, the expression of dominant-negative Rab5, unable to exchange GDP for GTP, interfered with the agonist-induced dissociation of Rab5 from the syndecan-1 cytoplasmic domain and significantly inhibited syndecan-1 shedding induced by several distinct agonists. Based on these data, we propose that Rab5 is a critical regulator of syndecan-1 shedding that serves as an on-off molecular switch through its alternation between the GDP-bound and GTP-bound forms.  相似文献   

17.
The Rab family of GTPases are regulators of eukaryotic vesicular membrane traffic, while modulation of actin dynamics is a function conventionally associated with the Rho family of GTPases. Rab35 is a Rab protein with both plasma membrane and endosomal localization, and has been implicated in diverse processes that include T-cell receptor recycling, oocyte yolk protein recycling and cytokinesis. Rab35 regulates neurite outgrowth in neuronal-like cells, and can induce protrusions even in typically non-adherent Jurkat T-cells. Recent evidence indicates that Rab35’s activity, particularly the ability to mediate protrusive outgrowths, is due to its direct influence on actin dynamics. This can occur via activation of the Rho family of GTPases, or through the engagement of its effector fascin, an actin bundling protein.  相似文献   

18.
REIC/Dkk-3 is a member of the Dickkopf family proteins known as Wnt-antagonists, and REIC/Dkk-3 expression is downregulated in a broad range of cancer types. REIC/Dkk-3 acts as a tumor suppressor in multiple cancer cell lines by inducing apoptosis through endoplasmic reticulum (ER) stress signaling. However, the intracellular interaction partners of REIC/Dkk-3 have not been fully elucidated. By employing yeast two-hybrid screening, we identified the human dynein light chain, Tctex-1, as a novel interaction partner of REIC/Dkk-3. We further disclosed that the interaction involves the 136–157 amino acid region of REIC/Dkk-3 by using the mammalian two-hybrid system. Interestingly, this binding region of REIC/Dkk-3 with Tctex-1 contains an amino acid sequence motif [-E-X-G-R-R-X-H-] which was previously reported as the Tctex-1 binding domain of dynein intermediate chain (DIC). Immunocytochemistry demonstrated that both REIC/Dkk-3 and Tctex-1 were localized around the ER of human fibroblasts, and the similar distribution pattern of the proteins suggests that their interaction occurs around the ER. This is the first study showing the interaction of a Dickkopf family protein with a dynein motor complex protein. The link between REIC/Dkk-3 and Tctex-1 may be of significance for understanding the molecular functions of the proteins in ER stress signaling and intracellular dynein motor dynamics, respectively.  相似文献   

19.
We have used the zero-length cross-linker 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) to examine protein-protein associations within purified outer arm dynein and axonemes from Chlamydomonas flagella. When axonemes were treated with 0.5-1 mM EDC in either the presence or absence of ATP/vanadate, a polypeptide band of Mr 127,000 recognized by monoclonal antibody 1878A (specific for the Mr 78,000 intermediate chain (IC78) of outer arm dynein) was generated. This conjugate was not obtained when purified dynein was treated with EDC. Further immunological analysis demonstrated that this complex also contained alpha- (but not beta-) tubulin. These results indicate that IC78 interacts with alpha-tubulin in situ in an ATP-insensitive manner. Identification of this interface between dynein and tubulin suggests that IC78, which probably is located at the base of the dynein particle (King, S. M., and Witman, G. B. (1990) J. Biol. Chem. 265, 19807-19811), contributes to the structural attachment of the dynein arms to the A-tubules of the outer doublet microtubules. Analysis of the cross-linked products from the purified dynein revealed several additional interactions involving the intermediate chains; these adducts provide further evidence for an intermediate chain/light chain complex within dynein and confirm that IC78 and IC69 associate directly.  相似文献   

20.
A W Tai  J Z Chuang  C Bode  U Wolfrum  C H Sung 《Cell》1999,97(7):877-887
The interaction of cytoplasmic dynein with its cargoes is thought to be indirectly mediated by dynactin, a complex that binds to the dynein intermediate chain. However, the roles of other dynein subunits in cargo binding have been unknown. Here we demonstrate that dynein translocates rhodopsin-bearing vesicles along microtubules. This interaction occurs directly between the C-terminal cytoplasmic tail of rhodopsin and Tctex-1, a dynein light chain. C-terminal rhodopsin mutations responsible for retinitis pigmentosa inhibit this interaction. Our results point to an alternative docking mechanism for cytoplasmic dynein, provide novel insights into the role of motor proteins in the polarized transport of post-Golgi vesicles, and shed light on the molecular basis of retinitis pigmentosa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号