首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neovascularization is crucial to lung morphogenesis; however, factors determining vessel growth and formation are poorly understood. The goal of our study was to develop an allograft model that would include maturation of the distal lung, thereby ultimately allowing us to study alveolar development, including microvascular formation. We transplanted 14-day gestational age embryonic mouse lung primordia subcutaneously into the back of nude mice for 3.5-14 days. Lung morphogenesis and neovascularization were evaluated by light microscopy, in situ hybridization, and immunohistochemical techniques. Embryonic 14-day gestational age control lungs had immature structural features consistent with pseudoglandular stage of lung development. In contrast, 14 days after subcutaneous transplantation of a 14-day gestational age lung, the allograft underwent significant structural morphogenesis and neovascularization. This was demonstrated by continued neovascularization and cellular differentiation, resulting in mature alveoli similar to those noted in the 2-day postnatal neonatal lung. Confirmation of maturation of the allograft was provided by progressive type II epithelial cell differentiation as evidenced by enhanced local expression of mRNA for surfactant protein C and a threefold (P < 0.008) increase in vessel formation as determined by immunocytochemical detection of platelet endothelial cell adhesion molecule-1 expression. Using the tyrosine kinase Flk-1 receptor (flk-1) LacZ transgene embryos, we determined that the neovascularization within the allograft was from the committed embryonic lung endothelium. Therefore, we have developed a defined murine allograft model that can be used to study distal lung development, including neovascularization. The model may be useful when used in conjunction with an altered genetic background (knockout or knock in) of the allograft and has the further decided advantage of bypassing placental barriers for introduction of pharmacological agents or DNA directly into the lung itself.  相似文献   

2.

Background

Endothelial-Monocyte Activating Polypeptide (EMAP II) is a secreted protein with well-established anti-angiogenic activities. Intracellular EMAP II expression is increased during fetal development at epithelial/mesenchymal boundaries and in pathophysiologic fibroproliferative cells of bronchopulmonary dysplasia, emphysema, and scar fibroblast tissue following myocardial ischemia. Precise function and regulation of intracellular EMAP II, however, has not been explored to date.

Methodology/Principal Findings

Here we show that high intracellular EMAP II suppresses cellular proliferation by slowing progression through the G2M cell cycle transition in epithelium and fibroblast. Furthermore, EMAP II binds to and is phosphorylated by Cdk1, and exhibits nuclear/cytoplasmic partitioning, with only nuclear EMAP II being phosphorylated. We observed that extracellular secreted EMAP II induces endothelial cell apoptosis, where as excess intracellular EMAP II facilitates epithelial and fibroblast cells migration.

Conclusions/Significance

Our findings suggest that EMAP II has specific intracellular effects, and that this intracellular function appears to antagonize its extracellular anti-angiogenic effects during fetal development and pulmonary disease progression.  相似文献   

3.
Bronchopulmonary dysplasia (BPD) is a chronic lung disease of prematurity. Over the years, the BPD phenotype has evolved, but despite various advances in neonatal management approaches, the reduction in the BPD burden is minimal. With the advent of surfactant, glucocorticoids, and new ventilation strategies, BPD has evolved from a disease of structural injury into a new BPD, marked by an arrest in alveolar growth in the lungs of extremely premature infants. This deficient alveolar growth has been associated with a diminution of pulmonary vasculature. Several investigators have described the epithelial / vascular co‐dependency and the significant role of crosstalk between vessel formation, alveologenesis, and lung dysplasia's; hence identification and study of factors that regulate pulmonary vascular emergence and inflammation has become crucial in devising effective therapeutic approaches for this debilitating condition. The potent antiangiogenic and proinflammatory protein Endothelial Monocyte Activating Polypeptide II (EMAP II) has been described as a mediator of pulmonary vascular and alveolar formation and its expression is inversely related to the periods of vascularization and alveolarization in the developing lung. Hence the study of EMAP II could play a vital role in studying and devising appropriate therapeutics for diseases of aberrant lung development, such as BPD. Herein, we review the vascular contribution to lung development and the implications that vascular mediators such as EMAP II have in distal lung formation during the vulnerable stage of alveolar genesis. Birth Defects Research (Part A) 100:180–188, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

4.
Carcinoembryonic cell adhesion molecule 6 (CEACAM6) is a glycosylated, glycophosphatidylinositol-anchored protein expressed in epithelial cells of various primate tissues. It binds gram-negative bacteria and is overexpressed in human cancers. CEACAM6 is associated with lamellar bodies of cultured type II cells of human fetal lung and protects surfactant function in vitro. In this study, we characterized CEACAM6 expression in vivo in human lung. CEACAM6 was present in lung lavage of premature infants at birth and increased progressively in intubated infants with lung disease. Of surfactant-associated CEACAM6, ~80% was the fully glycosylated, 90-kDa form that contains the glycophosphatidylinositol anchor, and the concentration (3.9% of phospholipid for adult lung) was comparable to that for surfactant proteins (SP)-A/B/C. We examined the affinity of CEACAM6 by purification of surfactant on density gradient centrifugation; concentrations of CEACAM6 and SP-B per phospholipid were unchanged, whereas levels of total protein and SP-A decreased by 60%. CEACAM6 mRNA content decreased progressively from upper trachea to peripheral fetal lung, whereas protein levels were similar in all regions of adult lung, suggesting proximal-to-distal developmental expression in lung epithelium. In adult lung, most type I cells and ~50% of type II cells were immunopositive. We conclude that CEACAM6 is expressed by alveolar and airway epithelial cells of human lung and is secreted into lung-lining fluid, where fully glycosylated protein binds to surfactant. Production appears to be upregulated during neonatal lung disease, perhaps related to roles of CEACAM6 in surfactant function, cell proliferation, and innate immune defense.  相似文献   

5.
K Peters  S Werner  X Liao  S Wert  J Whitsett    L Williams 《The EMBO journal》1994,13(14):3296-3301
Mouse lung development begins when two lung buds sprout from the epithelium of the embryonic gut. Patterning of the airways is then accomplished by the outgrowth and repetitive branching of the two lung buds, a process called branching morphogenesis. One of the four fibroblast growth factor (FGF) receptor genes, FGFR2, is expressed in the epithelium of a number of embryonic organs including the lung buds. To block the function of FGFR2 during branching morphogenesis of the lung without affecting its function in other embryonic tissues, the human surfactant protein C promoter was used to target expression of a dominant negative FGFR2 exclusively to lung bud epithelium in transgenic mice. Newborn mice expressing the transgene were completely normal except that instead of normally developed lungs they had two undifferentiated epithelial tubes that extended from the bifurcation of the trachea down to the diaphragm, a defect that resulted in perinatal death. Thus, the dominant negative FGF receptor completely blocked airway branching and epithelial differentiation, without prohibiting outgrowth, establishing a specific role for FGFs in branching morphogenesis of the mammalian lung.  相似文献   

6.
Protein phosphatase 2A (PP2A) is a key signal transduction intermediate in the regulation of cellular proliferation and differentiation in vitro. However, the role of PP2A in the context of a developing organ is unknown. To explore the role of PP2A in the regulation of lung development, we studied the effect of PP2A inhibition on new airway branching, induction of apoptosis, DNA synthesis, and expression of epithelial marker genes in whole organ explant cultures of embryonic (E14) rat lung. Microdissected lung primordia were cultured in medium containing one of either two PP2A inhibitors, okadaic acid (OA, 0-9 nM) or cantharidin (Can, 0-3,600 nM), or with the PP2B inhibitor deltamethrin (Del, 0-10 microM) as a control for a PP2A-specific effect for 48 h. PP2A inhibition with OA and Can significantly inhibited airway branching and overall lung growth. PP2B inhibition with Del did not affect lung growth or new airway development. Histologically, both PP2A- and PP2B-inhibited explants were similar to controls. Increased apoptosis was not the mechanism of decreased lung growth and new airway branching inasmuch as OA-treated explant sections subjected to the terminal deoxynucleotidyltransferase dUTP nick end labeling reaction demonstrated a decrease in apoptosis. However, PP2A inhibition with OA increased DNA content and 5-bromo-2'-deoxyuridine uptake that correlated with a G(2)/M cell cycle arrest. PP2A inhibition also resulted in altered differentiation of the respiratory epithelium as evidenced by decreased mRNA levels of the early epithelial marker surfactant protein C. These findings suggest that inhibition of protein phosphatases with OA and Can halted mesenchymal cell cycle progression and reduced branching morphogenesis in fetal rat lung explant culture.  相似文献   

7.
8.
9.
During lung injury alveolar epithelial cells are directly exposed to changes in PO(2) and PCO(2). Integrity of alveolar epithelial type II cells (AECII) is critical in lung injury but the effect of hypoxia and hypercapnia on AECII function, viability and proliferation has not been clearly investigated. Aim of the present work was to determine the direct effect of hypoxia and hypercapnia on surfactant protein expression, proliferation and apoptosis of lung epithelial cells in vitro. A549 alveolar epithelia cells were subjected to hypoxia (1%O(2)-5% CO(2)) or hypercapnia (21% O(2-) 15% CO(2)) and expression of surfactant protein C was measured and compared to normal conditions (21% O(2)- 5% CO(2)). Cell cycle progression and apoptosis were measured by flow cytometric analysis. RESULTS: A549 alveolar epithelial cells produce surfactant proteins, including surfactant protein C, when cultured under normal conditions, which is reduced under hypoxic conditions. Specifically, pro-SpC expression is moderately decreased after 8 h of culture in hypoxia, and is completely attenuated after 48 h. Hypercapnia decreases pro-SpC expression only after 48 h of exposure. Stimulation with TNF-alpha partly reverses pSPC decrease observed under hypoxic and hypercapnic conditions. Hypoxic culture of A549 cells results in progressive arrest of cells in the G1 phase of the cell cycle and increased apoptosis first observed 4 h following exposure and peaking at 24 h. In contrast hypercapnia has no significant effect on alveolar epithelial cell proliferation or apoptosis. CONCLUSIONS: Taken together we can conclude that hypoxia rapidly and severely affects AECII function and viability while hypercapnia has an inhibitory effect on pro-SpC production only after prolonged exposure.  相似文献   

10.
GATA6 regulates differentiation of distal lung epithelium   总被引:8,自引:0,他引:8  
  相似文献   

11.
The molecular basis of lung morphogenesis   总被引:35,自引:0,他引:35  
  相似文献   

12.
Although thyroid hormone (T(3)) influences epithelial cell differentiation during late fetal lung development, its effects on early lung morphogenesis are unknown. We hypothesized that T(3) would alter embryonic lung airway branching and temporal-spatial differentiation of the lung epithelium and mesenchyme. Gestational day 11.5 embryonic mouse lungs were cultured for 72 h in BGJb serum-free medium without or with added T(3) (0.2, 2.0, 10.0, or 100 nM). Evaluation of terminal bud counts showed a dose- and time-dependent decrease in branching morphogenesis. Cell proliferation was also significantly decreased with higher doses of T(3). Morphometric analysis of lung histology showed that T(3) caused a dose-dependent decrease in mesenchyme and increase in cuboidal epithelia and airway space. Immunocytochemistry showed that with T(3) treatment, Nkx2.1 and surfactant protein SP-C proteins became progressively localized to cuboidal epithelial cells and mesenchymal expression of Hoxb5 was reduced, a pattern resembling late fetal lung development. We conclude that exogenous T(3) treatment during early lung development accelerated epithelial and mesenchymal cell differentiation at the expense of premature reduction in new branch formation and lung growth.  相似文献   

13.
Early embryonic lung branching morphogenesis is regulated by many growth factor-mediated pathways. Bone morphogenetic protein 4 (BMP4) is one of the morphogens that stimulate epithelial branching in mouse embryonic lung explant culture. To further understand the molecular mechanisms of BMP4-regulated lung development, we studied the biological role of Smad-ubiquitin regulatory factor 1 (Smurf1), an ubiquitin ligase specific for BMP receptor-regulated Smads, during mouse lung development. The temporo-spatial expression pattern of Smurf1 in mouse embryonic lung was first determined by quantitative real-time PCR and immunohistochemistry. Overexpression of Smurf1 in airway epithelial cells by intratracheal introduction of recombinant adenoviral vector dramatically inhibited embryonic day (E) 11.5 lung explant growth in vitro. This inhibition of lung epithelial branching was restored by coexpression of Smad1 or by addition of soluble BMP4 ligand into the culture medium. Studies at the cellular level show that overexpression of Smurf1 reduced epithelial cell proliferation and differentiation, as documented by reduced PCNA-positive cell index and by reduced mRNA levels for surfactant protein C and Clara cell protein 10 expression. Further studies found that overexpression of Smurf1 reduced BMP-specific Smad1 and Smad5, but not Smad8, protein levels. Thus overexpression of Smurf1 specifically promotes Smad1 and Smad5 ubiquitination and degradation in embryonic lung epithelium, thereby modulating the effects of BMP4 on embryonic lung growth.  相似文献   

14.
15.
16.
Bone morphogenetic protein (BMP) 4 plays very important roles in regulating developmental processes of many organs, including lung. Smad1 is one of the BMP receptor downstream signaling proteins that transduce BMP4 ligand signaling from cell surface to nucleus. The dynamic expression patterns of Smad1 in embryonic mouse lungs were examined using immunohistochemistry. Smad1 protein was predominantly detected in peripheral airway epithelial cells of early embryonic lung tissue [embryonic day 12.5 (E12.5)], whereas Smad1 protein expression in mesenchymal cells increased during mid-late gestation. Many Smad1-positive mesenchymal cells were localized adjacent to large airway epithelial cells and endothelial cells of blood vessels, which colocalized with a molecular marker of smooth muscle cells (alpha-smooth muscle actin). The biological function of Smad1 in early lung branching morphogenesis was then studied in our established E11.5 lung explant culture model. Reduction of endogenous Smad1 expression was achieved by adding a Smad1-specific antisense DNA oligonucleotide, causing approximately 20% reduction of lung epithelial branching. Furthermore, airway epithelial cell proliferation and differentiation were also inhibited when endogenous Smad1 expression was knocked down. Therefore, these data indicate that Smad1, acting as an intracellular BMP signaling pathway component, positively regulates early mouse embryonic lung branching morphogenesis.  相似文献   

17.
18.
Perlecan, a ubiquitous basement membrane heparan sulfate proteoglycan, plays key roles in blood vessel growth and structural integrity. We discovered that the C terminus of perlecan potently inhibited four aspects of angiogenesis: endothelial cell migration, collagen-induced endothelial tube morphogenesis, and blood vessel growth in the chorioallantoic membrane and in Matrigel plug assays. The C terminus of perlecan was active at nanomolar concentrations and blocked endothelial cell adhesion to fibronectin and type I collagen, without directly binding to either protein; henceforth we have named it "endorepellin." We also found that endothelial cells possess a significant number of high affinity (K(d) of 11 nm) binding sites for endorepellin and that endorepellin binds endostatin and counteracts its anti-angiogenic effects. Thus, endorepellin represents a novel anti-angiogenic product, which may retard tumor neovascularization and hence tumor growth in vivo.  相似文献   

19.
It has been suggested that some adult bone marrow cells (BMC) can localize to the lung and develop tissue-specific characteristics including those of pulmonary epithelial cells. Here, we show that the combination of mild airway injury (naphthalene-induced) as a conditioning regimen to direct the site of BMC localization and transtracheal delivery of short-term cultured BMC enhances airway localization and adoption of an epithelial-like phenotype. Confocal analysis of airway and alveolar-localized BMC (fluorescently labeled) with epithelial markers shows expression of the pulmonary epithelial proteins, Clara cell secretory protein, and surfactant protein C. To confirm epithelial gene expression by BMC, we generated transgenic mice expressing green fluorescent protein (GFP) driven by the epithelial-specific cytokeratin-18 promoter and injected BMC from these mice transtracheally into wild-type recipients after naphthalene-induced airway injury. BMC retention in the lung was observed for at least 120 days following cell delivery with increasing GFP transgene expression over time. Some BMC cultured in vitro over time also expressed GFP transgene, suggesting epithelial transdifferentiation of the BMC. The results indicate that targeted delivery of BMC can promote airway regeneration.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号