首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
S Tong  A Porco  T Isturiz    T Conway 《Journal of bacteriology》1996,178(11):3260-3269
Three genes involved in gluconate metabolism, gntR, gntK, and gntU, which code for a regulatory protein, a gluconate kinase, and a gluconate transporter, respectively, were cloned from Escherichia coli K-12 on the basis of their known locations on the genomic restriction map. The gene order is gntU, gntK, and gntR, which are immediately adjacent to asd at 77.0 min, and all three genes are transcribed in the counterclockwise direction. The gntR product is 331 amino acids long, with a helix-turn-helix motif typical of a regulatory protein. The gntK gene encodes a 175-amino-acid polypeptide that has an ATP-binding motif similar to those found in other sugar kinases. While GntK does not show significant sequence similarity to any known sugar kinases, it is 45% identical to a second putative gluconate kinase from E. coli,gntV. The 445-amino-acid sequence encoded by gntU has a secondary structure typical of membrane-spanning transport proteins and is 37% identical to the gntP product from Bacillus subtilis. Kinetic analysis of GntU indicates an apparent Km for gluconate of 212 microM, indicating that this is a low-affinity transporter. Studies demonstrate that the gntR gene is monocistronic, while the gntU and gntK genes, which are separated by only 3 bp, form an operon. Expression of gntR is essentially constitutive, while expression of gntKU is induced by gluconate and is subject to fourfold glucose catabolite repression. These results confirm that gntK and gntU, together with another gluconate transport gene, gntT, constitute the GntI system for gluconate utilization, under control of the gntR gene product, which is also responsible for induction of the edd and eda genes of the Entner-Doudoroff pathway.  相似文献   

2.
We have studied the localization of three abundant cellular proteins which are substrates for tyrosine protein kinases in virally transformed chicken embryo fibroblasts. The primary location of each substrate is unaltered by transformation with Rous sarcoma virus (RSV). The tyrosine-phosphorylated species is localized with the nonphosphorylated species. Two of the proteins, of about 46,000 and 28,000 daltons, have a similar location. They are present in the high speed supernatant of cells homogenized in hypotonic buffer, and are soluble in nonionic detergent. The third protein, of about 39,000 daltons, is particulate when cells are homogenized in hypotonic buffer containing divalent cations, but approximately 30% is free in the high- speed supernatant when divalent cations are absent. This protein appears to be associated with the detergent-insoluble matrix when adherent cells are gently lysed in nonionic detergent in situ, but is soluble when the same cells are extracted with nonionic detergent in suspension. This suggests that one of the proteins are tightly associated with detergent-insoluble cytoskeletal structures, unlike the RSV transforming protein itself, which is the main tyrosine protein kinase known to be active in RSV-transformed cells.  相似文献   

3.
A spontaneously arising regulatory mutant of the gluconate system in Escherichia coli was isolated. This mutant became constitutive, probably in one step, for gluconate high-affinity transport, gluconokinase, and gluconate-6-P dehydrase. The mutation involved (gntR18) is cotransducible with asd. Pseudorevertants, derived from a mutant (M2) that shows a long lag for growth on gluconate mineral medium, were also isolated and characterized. They give constitutive levels of gluconokinase and gluconate-6-P dehydrase but lack high-affinity transport function. Genetic experiments performed with one of these pseudorevertants (M4) indicate that it carries a secondary mutation in the gntR gene. The M4 phenotype is thus the result of the interaction of expression of a constitutive mutation (gntR4) with the mutation of strain M2 (gntM2).  相似文献   

4.
M P Walsh 《Biochemistry》1985,24(14):3724-3730
Myosin light chain kinase plays a central role in the regulation of smooth muscle contraction. The activity of this enzyme is controlled by protein-protein interaction (the Ca2+-dependent binding of calmodulin) and by phosphorylation catalyzed by cAMP-dependent protein kinase. The effects of these two regulatory mechanisms on the conformation of myosin light chain kinase and the locations of the phosphorylation sites, the calmodulin-binding site, and the active site have been probed by limited proteolysis. Phosphorylated and nonphosphorylated myosin light chain kinases were subjected to limited digestion by four proteases having different peptide bond specificities (trypsin, chymotrypsin, Staphylococcus aureus V8 protease, and thrombin), both in the presence and in the absence of bound calmodulin. The digests were compared in terms of gel electrophoretic pattern, distribution of phosphorylation sites, and Ca2+ dependence of kinase activity. A 24 500-dalton chymotryptic peptide containing both sites of phosphorylation was purified and tentatively identified as the amino-terminal peptide. The following conclusions can be drawn: neither phosphorylation nor calmodulin binding induces dramatic changes in the conformation of the kinase; the kinase contains two regions that are particularly susceptible to proteolytic cleavage, one located approximately 25 000 daltons from the amino terminus and the other near the center of the molecule; the two phosphorylation sites are located within 24 500 (probably 17 500) daltons of the amino terminus; the active site is located close to the center of the molecule; the calmodulin-binding site is located in the amino-terminal half of the molecule, between the sites of phosphorylation and the active site, and this region is very susceptible to cleavage by trypsin.  相似文献   

5.
Summary Zymomonas mobilis ATCC 29191 is able to degrade gluconate but cannot use it as a single carbon and energy source. Gluconate is phosphorylated by a gluconate kinase (EC 2.7.1.12) and the resulting 6-phosphogluconate is further catabolized to yield about 0.8 mol ethanol per mol of gluconate, considerable amounts of acetate and acetoin. This product spectrum agrees with the theoretical yield of only one reduction equivalent if gluconate is phosphorylated by a kinase and subsequently metabolized via the Entner-Doudoroff pathway.Furthermore, Z. mobilis contains a membrane-bound enzyme system which is able to oxidize glucose to gluconate. Cell-free extracts were active in an assay system with Wurster's blue as electron acceptor, and various aldoses as well as maltose, mannitol and sorbitol could be oxidized. The affinity for sorbitol was very low (K m =330 mM) but reasonable for glucose (K m =2.8 mM). The pH optimum for the glucose-oxidizing reaction was 6.5, while that for sorbitol oxidation was 5.5.Dedicated to Prof. Dr. H. Dörfel on the occasion of his 60th birthday  相似文献   

6.
The uptake of 2-ketogluconate is inducible in Pseudomonas putida: 2-ketogluconate, glucose, gluconate, glycerol and glycerate were each good nutritional inducers of this ability. 2-Ketogluconate uptake obeyed saturation kinetics (apparent K min 2-ketogluconate-grown cells was 0.4 mM). 2-Ketogluconate was transported against a concentration gradient, apparently in an unchanged state, and the process required metabolic energy, all of which indicate an active transport system.A number of independently isolated mutants with deranged activity of a common glucose-gluconate uptake system were found to be also defective in 2-ketogluconate transport. Strains unable to transport 2-ketogluconate which grew readily on glucose and gluconate were also isolated. These results suggest that 2-ketogluconate transport is governed by at least two genetic elements: one which is also required to take up glucose and gluconate and another which appears to be specific for 2-ketogluconate transport. Similarly glucose and gluconate transport appears to require at least one factor which is not necessary for 2-ketogluconate transport, as suggested by the lack of induction of the common glucose-gluconate uptake system by glycerol and glycerate, substrates which are good inducers of 2-ketogluconate uptake.Abbreviations CCCP carbonyl-cyanide-m-chlorophenyl-hydrazone - cpm radioactivity counts per minute - GGU glucose-gluconate uptake - PFU plaque forming units - U.V. ultraviolet Dedicated to Prof. Roger Y. Stainer on the occasion of his 60th birthday  相似文献   

7.
8.
The crystal structure of gluconate kinase from Escherichia coli has been determined to 2.0 A resolution by X-ray crystallography. The three-dimensional structure was solved by multi-wavelength anomalous dispersion, using a crystal of selenomethionine-substituted enzyme. Gluconate kinase is an alpha/beta structure consisting of a twisted parallel beta-sheet surrounded by alpha-helices with overall topology similar to nucleoside monophosphate (NMP) kinases, such as adenylate kinase. In order to identify residues involved in substrate binding and catalysis, structures of binary complexes with ATP, the ATP analogue adenosine 5'-(beta,gamma-methylene) triphosphate and the product, gluconate-6-phosphate have been determined. Significant conformational changes are induced upon binding of ATP to the enzyme. The largest changes involve a hinge-bending motion of the NMP(bind) part and a motion of the LID with adjacent helices, which opens the cavity to the second substrate, gluconate. Opening of the active site cleft upon ATP binding is the opposite of what has been observed in the NMP kinase family so far, which usually close their active site to prevent fortuitous hydrolysis of ATP. The conformational change positions the side-chain of Arg120 to stack with the purine ring of ATP and the side-chain of Arg124 is shifted to interact with the alpha-phosphate in ATP, at the same time protecting ATP from solvent water. The beta and gamma-phosphate groups of ATP bind in the predicted P-loop. A conserved lysine side-chain interacts with the gamma-phosphate group, and might promote phosphoryl transfer. Gluconate-6-phosphate binds with its phosphate group in a similar position as the gamma-phosphate of ATP, consistent with inline phosphoryl transfer. The gluconate binding-pocket in GntK is located in a different position than the nucleoside binding-site usually found in NMP kinases.  相似文献   

9.
Molecular Properties of Drosophila Acetylcholinesterase   总被引:6,自引:3,他引:3  
Abstract: Two distinct classes of acetylcholinesterase (AChE) from the fruit fly Drosophila melanogaster are reported: a soluble species that shows heterogeneity of forms and a particulate species. The subunit composition of the particulate enzyme was studied using the active site label [3H]diisopropylfluorophosphate. Comparison of the electrophoretic patterns on nondenaturing gels using the activity stain and the active site label shows that the label is specific to AChE. The smallest active site-containing subunit of the enzyme is a monomer of $60,000 daltons MW. Two such units are linked by disulphide bonds to produce a dimer of about 110,000 daltons. Another monomeric form of MW $64,000 daltons, although present, does not participate in the dimerisation. The particulate enzyme when solubilised exists as a 9–10S species as determined by sucrose gradient centrifugation. This species has a MW>200,000, as shown by its behaviour on a coarse-bead Sephadex-G200 column. Electrophoretic analysis suggests a MW of nearly 250,000 daltons for this form. Thus, this species is likely to be a tetramer. One possibility is that this tetramer is made up of two units of 64,000 daltons each and a dimer of 110,000 daltons. Preliminary data on mutant enzymes that support such a possibility are also presented.  相似文献   

10.
1. From Escherichia coli strain K2.1.5(c).8.9, which is devoid of 6-phosphogluconate dehydrogenase (gnd) and 6-phosphogluconate dehydratase (edd) activities, a mutant R6 was isolated that was tolerant to gluconate though still edd(-), gnd(-). 2. Measurements of the fate of labelled gluconate, of the conversion of gluconate into 6-phosphogluconate, and of the induction of gluconate kinase by the two organisms show that, although both inducibly form a gluconate-transport system, strain R6 is impaired in its ability to convert the gluconate thus taken up into 6-phosphogluconate; it was therefore used for study of the kinetics and energetics of gluconate uptake. 3. Suspensions of strain R6 induced for gluconate uptake took up this substrate via a ;high affinity' transport process, with K(m) about 10mum and V(max.) about 25nmol/min per mg dry mass; a ;low affinity' system demonstrated to occur in certain E. coli mutants was not induced under the conditions used in this work. 4. The uptake of gluconate was inhibited by lack of oxygen and by inhibitors of electron transport; such inhibitors also promoted the efflux of gluconate taken up. 5. Membrane vesicles prepared from strain R6 also manifested these properties when incubated with suitable electron donors, at rates similar to those observed with whole cells. 6. The results indicate that the active transport of gluconate into the cells is the rate-limiting step in gluconate utilization by E. coli, and that the mechanism of this process can be validly studied with membrane vesicles.  相似文献   

11.
Metabolic responses to cofeeding of different carbon substrates in carbon-limited chemostat cultures were investigated with riboflavin-producing Bacillus subtilis. Relative to the carbon content (or energy content) of the substrates, the biomass yield was lower in all cofeeding experiments than with glucose alone. The riboflavin yield, in contrast, was significantly increased in the acetoin- and gluconate-cofed cultures. In these two scenarios, unusually high intracellular ATP-to-ADP ratios correlated with improved riboflavin yields. Nuclear magnetic resonance spectra recorded with amino acids obtained from biosynthetically directed fractional 13C labeling experiments were used in an isotope isomer balancing framework to estimate intracellular carbon fluxes. The glycolysis-to-pentose phosphate (PP) pathway split ratio was almost invariant at about 80% in all experiments, a result that was particularly surprising for the cosubstrate gluconate, which feeds directly into the PP pathway. The in vivo activities of the tricarboxylic acid cycle, in contrast, varied more than twofold. The malic enzyme was active with acetate, gluconate, or acetoin cofeeding but not with citrate cofeeding or with glucose alone. The in vivo activity of the gluconeogenic phosphoenolpyruvate carboxykinase was found to be relatively high in all experiments, with the sole exception of the gluconate-cofed culture.  相似文献   

12.
Wheat albumins were extracted from whole wheat flour with 150 mM sodium chloride solution and precipitated between 0·4 and 1·8 M ammonium sulphate. The albumin precipitate was separated by gel filtration on Sephadex G100 into five peaks. Three peaks (II, III, and IV), whose MWs were 60 000, 24 000 and 12 500 daltons respectively, were active toward several insect α-amylases, whereas only peak III inhibited human saliva and pancreatic α-amylases. Peaks III and IV also inhibited trypsin. In each active peak, we found several α-amylase inhibitors slightly different in their electrophoretic mobilities in a Tris—glycine buffer system (pH 8·5), whereas only one major trypsin inhibitor was present in peaks III and IV. In contrast to α-amylase inhibitors that were all anodic, trypsin inhibitors migrated to the cathode under our experimental conditions. From a quantitative standpoint, wheat albumins that inhibit trypsin are negligible, whereas about 2/3 of the total albumin inhibits amylases from different origins. All inhibitor components of peak III were active toward both insect and mammalian α-amylases. Moreover, they reversibly dissociated in the presence of 6 M guanidine hydrochloride giving two similar subunits.  相似文献   

13.
Several plasmids of the W incompatibility group were examined by electron microscope heteroduplex analysis. They were all conjugative plasmids of about 20 × 106 daltons even though isolated from different bacterial species in different parts of the world. One stretch of DNA of about 13 × 106 daltons was common to all W plasmids. This region included genes associated with plasmid transfer. The various drug resistance genes, including a known transposition sequence, were clustered in a single region of the W plasmid chromosome.  相似文献   

14.
The crystal structure of a fully active form of human protein kinase CK2 (casein kinase 2) consisting of two C-terminally truncated catalytic and two regulatory subunits has been determined at 3.1 A resolution. In the CK2 complex the regulatory subunits form a stable dimer linking the two catalytic subunits, which make no direct contact with one another. Each catalytic subunit interacts with both regulatory chains, predominantly via an extended C-terminal tail of the regulatory subunit. The CK2 structure is consistent with its constitutive activity and with a flexible role of the regulatory subunit as a docking partner for various protein kinases. Furthermore it shows an inter-domain mobility in the catalytic subunit known to be functionally important in protein kinases and detected here for the first time directly within one crystal structure.  相似文献   

15.
In contrast to the active conformations of protein kinases, which are essentially the same for all kinases, inactive kinase conformations are structurally diverse. Some inactive conformations are, however, observed repeatedly in different kinases, perhaps reflecting an important role in catalysis. In this review, we analyze one of these recurring conformations, first identified in CDK and Src kinases, which turned out to be central to understanding of how kinase domain of the EGF receptor is activated. This mechanism, which involves the stabilization of the active conformation of an α helix, has features in common with mechanisms operative in several other kinases.  相似文献   

16.
Phosphoamino acid compositions were determined for 10 size classes of cellular proteins, separated by electrophoresis through one-dimensional sodium dodecyl sulfate-polyacrylamide gels. Phosphotyrosine-containing proteins were observed in uninfected chicken embryo fibroblasts in every size class analyzed, ranging from approximately 20,000 to greater than 200,000 daltons. Transformation of chicken embryo fibroblasts by Rous sarcoma virus or PRC II avian sarcoma virus led to increases in phosphorylation of proteins at tyrosine residues in all of these size classes. A large fraction of the phosphotyrosine-containing protein molecules observed in Rous sarcoma virus-transformed cells was larger than 100,000 daltons with a second broad peak in the 35,000- to 60,000-dalton range. This study suggests that there are a number of substrates of viral or cellular tyrosine-specific protein kinases, which have not yet been identified by other methods.  相似文献   

17.
18.
Acetobacter diazotrophicus is a diazotrophic bacterium that colonizes sugarcane tissues. Glucose is oxidized to gluconate in the periplasm prior to uptake and metabolism. A membrane-bound glucose dehydrogenase quinoenzyme [which contains pyrroloquinoline quinone (PQQ) as the prosthetic group] is involved in that oxidation. Gluconate is oxidized further via the hexose monophosphate pathway and tricarboxylic acid cycle. A. diazotrophicus PAL3 was grown in a chemostat with atmospheric nitrogen as the sole N source provided that the dissolved oxygen was maintained at 1.0–2.0% air saturation. The biomass yields of A. diazotrophicus growing with glucose or gluconate with fixed N were very low compared with other heterotrophic bacteria. The biomass yields under N-fixing conditions were more than 30% less than with ammonium as the N source using gluconate as the carbon source but, surprisingly, were only about 14% less with glucose. The following scheme for the metabolism of A. diazotrophicus through the different pathways emerged: (1) the respiratory chain of this organism had a different efficiency of ATP production in the respiratory chain (P:O ratio) under different culture conditions; and (2) N fixation was one (but not the sole) condition under which a higher P:O ratio was observed. The other condition appears to be the expression of an active PQQ-linked glucose dehydrogenase. Received: 6 December 1999 / Received revision: 22 March 2000 / Accepted: 7 April 2000  相似文献   

19.
Summary Agrobacterium radiobacter NCIB 11 883 does not produce gluconate under conditions of glucose excess in batch or continuous culture. However, the addition of micromolar concentrations of pyrrolo quinoline quinone (PQQ) to fermentation media resulted in rapid excretion of gluconate by batch and continuous cultures. This rapid dehydrogenation of glucose was found in cells grown under carbon and nitrogen limitation and is constitutive which suggests that the only reason why this activity is not normally expressed is due to the inability of the organism to synthesize the prosthetic group (PQQ) of the glucose dehydrogenase enzyme.Although the addition of PQQ to batch and continuous cultures caused a very rapid specific rate of gluconate production (0.6–1.1 g gluconate g-1 dry wt. h-1) the rate of exopolysaccharide production remained unaltered. Indeed, when the rates of substrate and oxygen uptake are corrected for the rate of gluconate production in the presence of PQQ there appears to be little physiological consequence as a result of this oxidation.  相似文献   

20.
Gluconate kinase from Zymomonas mobilis: isolation and characteristics   总被引:2,自引:0,他引:2  
The enzyme gluconate kinase EC 2.7.1.12 has been found at high levels in glucose-grown Zymomonas mobilis cells. A simple procedure, based on differential dye-ligand chromatography, has been used to isolate the enzyme, purifying it some 600-fold. The purified enzyme is a monomer of molecular weight 18,000 Da, which is much smaller than other gluconate kinases reported. It has a relatively low affinity for ATP. (Km = 1.5 mM), but high for gluconate (Km = 0.33 mM), and has little activity with any other potential substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号