共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous results from equilibrium and kinetic studies of the folding of bovine growth hormone (bGH) have demonstrated that bGH does not follow a simple two-step folding mechanism. These results are summarized and interpreted according to the "molten globule" model. The molten globule state of bGH is characterized as a folding intermediate which is largely alpha-helical, retains a compact hydrodynamic radius, has packing of the aromatic side chains that is similar to the unfolded state, and possesses a solvent-exposed hydrophobic surface along helix 106-127 that readily leads to association. 相似文献
2.
The molten globule state as a clue for understanding the folding and cooperativity of globular-protein structure 总被引:91,自引:0,他引:91
K Kuwajima 《Proteins》1989,6(2):87-103
3.
Certain partly ordered protein conformations, commonly called “moltenglobule states,” are widely believed to represent protein folding intermediates. Recentstructural studies of molten globule states ofdifferent proteins have revealed features whichappear to be general in scope. The emergingconsensus is that these partly ordered forms exhibit a high content of secondary structure, considerable compactness, nonspecific tertiary structure, and significant structural flexibility. These characteristics may be used to define ageneral state of protein folding called “the molten globule state,” which is structurally andthermodynamically distinct from both the native state and the denatured state. Despite exaatensive knowledge of structural features of afew molten globule states, a cogent thermodynamic argument for their stability has not yetbeen advanced. The prevailing opinion of thelast decade was that there is little or no enthalpy difference or heat capacity differencebetween the molten globule state and the unfolded state. This view, however, appears to beat variance with the existing database of protein structural energetics and with recent estimates of the energetics of denaturation of α-lactalbumin, cytochrome c, apomyoglobin, and T4 lysozyme. We discuss these four proteins at length. The results of structural studies, together with the existing thermodynamic values for fundamental interactions in proteins, provide the foundation for a structural thermodynamic framework which can account for the observed behavior of molten globule states. Within this framework, we analyze the physical basis for both the high stability of several molten globule states and the low probability of other protential folding intermediates. Additionally, we consider, in terms of reduced enthalpy changes and disrupted cooperative interactions, the thermodynamic basis for the apparent absence of a thermally induced, cooperative unfolding transition for some molten globule states. © 1993 Wiley-Liss, Inc. 相似文献
4.
Hexafluoroacetone hydrate as a structure modifier in proteins: characterization of a molten globule state of hen egg-white lysozyme. 下载免费PDF全文
S. Bhattacharjya P. Balaram 《Protein science : a publication of the Protein Society》1997,6(5):1065-1073
A molten globule-like state of hen egg-white lysozyme has been characterized in 25% aqueous hexafluoroacetone hydrate (HFA) by CD, fluorescence, NMR, and H/D exchange experiments. The far UV CD spectra of lysozyme in 25% HFA supports retention of native-like secondary structure while the loss of near UV CD bands are indicative of the overall collapse of the tertiary structure. The intermediate state in 25% HFA exhibits an enhanced affinity towards the hydrophobic dye, ANS, and a native-like tryptophan fluorescence quenching. 1-D NMR spectra indicates loss of native-like tertiary fold as evident from the absence of ring current-shifted 1H resonances. CD, fluorescence, and NMR suggest that the transition from the native state to a molten globule state in 25% HFA is a cooperative process. A second structural transition from this compact molten globule-like state to an "open" helical state is observed at higher concentrations of HFA (> or = 50%). This transition is characterized by a dramatic loss of ANS binding with a concomitant increase in far UV CD bands. The thermal unfolding of the molten globule state in 25% HFA is sharply cooperative, indicating a predominant role of side-chain-side-chain interactions in the stability of the partially folded state. H/D exchange experiments yield higher protection factors for many of the backbone amide protons from the four alpha-helices along with the C-terminal 3(10) helix, whereas little or no protection is observed for most of the amide protons from the triple-stranded antiparallel beta-sheet domain. This equilibrium molten globule-like state of lysozyme in 25% HFA is remarkably similar to the molten globule state observed for alpha-lactalbumin and also with the molten globule state transiently observed in the kinetic refolding experiments of hen lysozyme. These results suggest that HFA may prove generally useful as a structure modifier in proteins. 相似文献
5.
Hydrophobic photolabeling as a new method for structural characterization of molten globule and related protein folding intermediates. 下载免费PDF全文
P. R. D''''Silva A. K. Lala 《Protein science : a publication of the Protein Society》1999,8(5):1099-1103
Recent advances in attempts to unravel the protein folding mechanism have indicated the need to identify the folding intermediates. Despite their transient nature, in a number of cases it has been possible to detect and characterize some of the equilibrium intermediates, for example, the molten globule (MG) state. The key features of the MG state are retention of substantial secondary structure of the native state, considerable loss of tertiary structure leading to increased hydrophobic exposure, and a compact structure. NMR, circular dichroism, and fluorescence spectroscopies have been most useful in characterizing such intermediates. We report here a new method for structural characterization of the MG state that involves probing the exposed hydrophobic sites with a hydrophobic photoactivable reagent--2[3H]diazofluorene. This carbene-based reagent binds to hydrophobic sites, and on photolysis covalently attaches itself to the neighboring amino acid side chains. The reagent photolabels alpha-lactalbumin as a function of pH (3-7.4), the labeling at neutral pH being negligible and maximal at pH 3. Chemical and proteolytic fragmentation of the photolabeled protein followed by peptide sequencing permitted identification of the labeled residues. The results obtained indicate that the sequence corresponding to B (23-34) and C (86-98) helix of the native structure are extensively labeled. The small beta-domain (40-50) is poorly labeled, Val42 being the only residue that is significantly labeled. Our data, like NMR data, indicate that in the MG state of alpha-lactalbumin, the alpha-domain has a greater degree of persistent structure than the beta-domain. However, unlike the NMR method, the photolabeling method is not limited by the size of the protein and can provide information on several new residues, for example, Leu115. The current method using DAF thus allows identification of stable and hydrophobic exposed regions in folding intermediates as the reagent binds and on photolysis covalently links to these regions. 相似文献
6.
Quezada CM Schulman BA Froggatt JJ Dobson CM Redfield C 《Journal of molecular biology》2004,338(1):149-158
NMR spectroscopy has been used to follow the urea-induced unfolding of the low pH molten globule states of a single-disulfide variant of human alpha-lactalbumin ([28-111] alpha-LA) and of two mutants, each with a single proline substitution in a helix. [28-111] alpha-LA forms a molten globule very similar to that formed by the wild-type four-disulfide protein, and this variant has been used as a model for the alpha-lactalbumin (alpha-LA) molten globule in a number of studies. The urea-induced unfolding behavior of [28-111] alpha-LA is similar to that of the four-disulfide form of the protein, except that [28-111] alpha-LA is less stable and has greater cooperativity in the loss of different elements of structure. For one mutant, L11P, the helix containing the mutation is highly destabilized such that it is completely unfolded even in the absence of urea. By contrast, for the other mutant, Q117P, the helix containing the mutation retains its compact structure. Both mutations, however, show significant long-range destabilization of the overall fold showing that the molten globule state has a degree of global cooperativity. The results reveal that different permutations of three of the four major alpha-helices of the protein can form a stable, locally cooperative, compact structural core. Taken together, these findings demonstrate that the molten globule state of alpha-LA is an ensemble of conformations, with different subsets of structures linked by a range of long-range interactions. 相似文献
7.
Molten globules are partially folded forms of proteins thought to be general intermediates in protein folding. The 15N-1H HSQC NMR spectrum of the human alpha-lactalbumin (alpha-LA) molten globule at pH 2 and 20 degrees C is characterised by broad lines which make direct study by NMR methods difficult; this broadening arises from conformational fluctuations throughout the protein on a millisecond to microsecond timescale. Here, we find that an increase in temperature to 50 degrees C leads to a dramatic sharpening of peaks in the 15N-1H HSQC spectrum of human alpha-LA at pH 2. Far-UV CD and ANS fluorescence experiments demonstrate that under these conditions human alpha-LA maintains a high degree of helical secondary structure and the exposed hydrophobic surfaces that are characteristic of a molten globule. Analysis of the H(alpha), H(N) and 15N chemical shifts of the human alpha-LA molten globule at 50 degrees C leads to the identification of regions of native-like helix in the alpha-domain and of non-native helical propensity in the beta-domain. The latter may be responsible for the observed overshoot in ellipticity at 222 nm in kinetic refolding experiments. 相似文献
8.
Ding F Guo W Dokholyan NV Shakhnovich EI Shea JE 《Journal of molecular biology》2005,350(5):1035-1050
We use an integrated computational approach to reconstruct accurately the transition state ensemble (TSE) for folding of the src-SH3 protein domain. We first identify putative TSE conformations from free energy surfaces generated by importance sampling molecular dynamics for a fully atomic, solvated model of the src-SH3 protein domain. These putative TSE conformations are then subjected to a folding analysis using a coarse-grained representation of the protein and rapid discrete molecular dynamics simulations. Those conformations that fold to the native conformation with a probability (P(fold)) of approximately 0.5, constitute the true transition state. Approximately 20% of the putative TSE structures were found to have a P(fold) near 0.5, indicating that, although correct TSE conformations are populated at the free energy barrier, there is a critical need to refine this ensemble. Our simulations indicate that the true TSE conformations are compact, with a well-defined central beta sheet, in good agreement with previous experimental and theoretical studies. A structured central beta sheet was found to be present in a number of pre-TSE conformations, however, indicating that this element, although required in the transition state, does not define it uniquely. An additional tight cluster of contacts between highly conserved residues belonging to the diverging turn and second beta-sheet of the protein emerged as being critical elements of the folding nucleus. A number of commonly used order parameters to identify the transition state for folding were investigated, with the number of native Cbeta contacts displaying the most satisfactory correlation with P(fold) values. 相似文献
9.
Stein and Moore Award address. The molten globule intermediate of apomyoglobin and the process of protein folding. 总被引:1,自引:6,他引:1 下载免费PDF全文
The molten globule model for the beginning of the folding process, which originated with Kuwajima's studies of alpha-lactalbumin (Kuwajima, K., 1989, Proteins Struct. Funct. Genet. 6, 87-103, and references therein), states that, for those proteins that exhibit equilibrium molten globule intermediates, the molten globule is a major kinetic intermediate near the start of the folding pathway. Pulsed hydrogen-deuterium exchange measurements confirm this model for apomyoglobin (Jennings, P.A. & Wright, P.E., in prep.). The energetics of the acid-induced unfolding transition, which have been determined by fitting a minimal three-state model (N<-->I<-->U; N = native, I = molten globule intermediate, U = unfolded) show that I is more stable than U at neutral pH (Barrick, D. & Baldwin, R.L., 1993, Biochemistry 32, in press), which provides an explanation for why I is formed from U at the start of folding. Hydrogen exchange rates measured by two-dimensional NMR for individual peptide NH protons, taken together with the CD spectrum of I, indicate that moderately stable helices are present in I at the locations of the A, G, and H helices of native myoglobin (Hughson, F.M., Wright, P.E., & Baldwin, R.L., 1990, Science 249, 1544-1548). Directed mutagnesis experiments indicate that the interactions between the A, G, and H helices in I are loose (Hughson, F.M., Barrick, D., & Baldwin, R.L., 1991, Biochemistry 30, 4113-4118), which can explain why I is formed rapidly from U at the start of folding.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
10.
Structural characterization of the molten globule of alpha-lactalbumin by solution X-ray scattering. 总被引:1,自引:8,他引:1 下载免费PDF全文
M. Kataoka K. Kuwajima F. Tokunaga Y. Goto 《Protein science : a publication of the Protein Society》1997,6(2):422-430
A compact denatured state is often observed under a mild denaturation condition for various proteins. A typical example is the alpha-lactalbumin molten globule. Although the molecular compactness and shape are the essential properties for defining the molten globule, there have been ambiguities of these properties for the molten globule of alpha-lactalbumin. Using solution X-ray scattering, we have examined the structural properties of two types of molten globule of alpha-lactalbumin, the apo-protein at neutral pH and the acid molten globule. The radius of gyration for the native holo-protein was 15.7 A, but the two different molten globules both had a radius of gyration of 17.2 A. The maximum dimension of the molecule was also increased from 50 A for the native state to 60 A for the molten globule. These values clearly indicate that the molten globule is not as compact as the native state. The increment in the radius of gyration was less than 10% for the alpha-lactalbumin molten globule, compared with up to 30% for the molten globules of other globular proteins. Intramolecular disulfide bonds restrict the molecular expansion of the molten globule. The distance distribution function of the alpha-lactalbumin molten globule is composed of a single peak suggesting a globular shape, which is simply swollen from the native state. The scattering profile in the high Q region of the molten globule indicates the presence of a significant amount of tertiary fold. Based on the structural properties obtained by solution X-ray scattering, general and conceptual structural images for the molten globules of various proteins are described and compared with the individual, detailed structural model obtained by nuclear magnetic resonance. 相似文献
11.
The apoflavodoxin fragment comprising residues 1-149 that can be obtained by chemical cleavage of the C-terminal alpha-helix of the full-length protein is known to populate a molten globule conformation that displays a cooperative behaviour and experiences two-state urea and thermal denaturation. Here, we have used a recombinant form of this fragment to investigate molten globule energetics and to derive structural information by equilibrium Phi-analysis. We have characterized 15 mutant fragments designed to probe the persistence of native interactions in the molten globule and compared their conformational stability to that of the equivalent full-length apoflavodoxin mutants. According to our data, most of the mutations analysed modify the stability of the molten globule fragment following the trend observed when the same mutations are implemented in the full-length protein. However, the changes in stability observed in the molten globule are much smaller and the Phi-values calculated are (with a single exception) below 0.4. This is consistent with an overall and significant debilitation of the native structure. Nevertheless, the fact that the molten globule fragment can be stabilised using as a guide the native structure of the full-length protein (by increasing helix propensity, optimising charge interactions and filling small cavities) suggests that the overall structure of the molten globule is still quite close to native, in spite of the lowered stability observed. 相似文献
12.
13.
Edwin F Sharma YV Jagannadham MV 《Biochemical and biophysical research communications》2002,290(5):1441-1446
Papain exists in molten globule (MG) state at pH 2.0 and in this state protein tends to aggregate in the presence of lower concentrations of guanidine hydrochloride (GuHC1). Such aggregation is prevented if a low concentration of urea is also present in the buffer; in addition, stabilization of the protein is also induced. Intrinsic fluorescence properties of papain as well as ANS binding suggest significant changes in the structure of papain, in the presence of urea with the absence of major changes in the secondary structure of the protein. The GuHCl- and temperature-induced unfolding of papain, in the presence of urea, indicates stabilization of the protein as seen from the higher transition midpoints, when monitored by fluorescence and circular dichroism (CD). However, a similar phenomenon is not seen under neutral conditions in the presence of urea either at low or high concentrations. The utility of prevention of aggregation by urea is also discussed. 相似文献
14.
Van Dael H Haezebrouck P Joniau M 《Protein science : a publication of the Protein Society》2003,12(3):609-619
Thermal and chemical unfolding studies of the calcium-binding canine lysozyme (CL) by fluorescence and circular dichroism spectroscopy show that, upon unfolding in the absence of calcium ions, a very stable equilibrium intermediate state is formed. At room temperature and pH 7.5, for example, a stable molten globule state is attained in 3 M GdnHCl. The existence of such a pure and stable intermediate state allowed us to extend classical stopped-flow fluorescence measurements that describe the transition from the native to the unfolded form, with kinetic experiments that monitor separately the transition from the unfolded to the intermediate state and from the intermediate to the native state, respectively. The overall refolding kinetics of apo-canine lysozyme are characterized by a significant drop in the fluorescence intensity during the dead time, followed by a monoexponential increase of the fluorescence with k = 3.6 s(-1). Furthermore, the results show that, unlike its drastic effect on the stability, Ca(2+)-binding only marginally affects the refolding kinetics. During the refolding process of apo-CL non-native interactions, comparable to those observed in hen egg white lysozyme, are revealed by a substantial quenching of tryptophan fluorescence. The dissection of the refolding process in two distinct steps shows that these non-native interactions only occur in the final stage of the refolding process in which the two domains match to form the native conformation. 相似文献
15.
Many proteins are capable of populating partially folded states known as molten globule states. Alpha-lactalbumin forms a molten globule under a range of conditions including low pH (the A-state) and at neutral pH in the absence of Ca(2+) with modest amounts of denaturant. The A-state is the most thoroughly characterized and thought to mimic a kinetic intermediate populated during refolding at neutral pH. We demonstrate that the properties and interactions that stabilize the A-state and the pH 7 molten globule of human alpha-lactalbumin differ. The unfolding of the wild-type protein is compared to the unfolding of a variant that lacks the 6 - 120 disulfide bond and to an autonomously folded peptide construct that we have previously shown represents the minimum core structure of the A-state of human alpha-lactalbumin. Studies conducted at pH 2 and 7 show that the disulfide makes little contribution to the stability of the molten globule at pH 7 but is important at pH 2. In contrast, the beta-subdomain of the protein is less important at pH 2 than at pH 7. The role of helix propensity in stabilizing the different forms of the molten globule state is examined and it is shown that it cannot account for the differences. The strikingly different behavior observed at pH 2 and 7 indicates that the A-state may not be a rigorous mimic of the folding intermediate populated at pH 7. 相似文献
16.
Effects of pressure on the structure of metmyoglobin: molecular dynamics predictions for pressure unfolding through a molten globule intermediate. 下载免费PDF全文
W. B. Floriano M. A. Nascimento G. B. Domont W. A. Goddard rd 《Protein science : a publication of the Protein Society》1998,7(11):2301-2313
We investigated the pathway for pressure unfolding of metmyoglobin using molecular dynamics (MD) for a range of pressures (0.1 MPa to 1.2 GPa) and a temperature of 300 K. We find that the unfolding of metmyoglobin proceeds via a two-step mechanism native --> molten globule intermediate --> unfolded, where the molten globule forms at 700 MPa. The simulation describes qualitatively the experimental behavior of metmyoglobin under pressure. We find that unfolding of the alpha-helices follows the sequence of migrating hydrogen bonds (i,i + 4) --> (i,i + 2). 相似文献
17.
During replica exchange molecular dynamics (RexMD) simulations, several replicas of a system are simulated at different temperatures in parallel allowing for exchange between replicas at frequent intervals. This technique allows significantly improved sampling of conformational space and is increasingly being used for structure prediction of peptides and proteins. A drawback of the standard temperature RexMD is the rapid increase of the replica number with increasing system size to cover a desired temperature range. In an effort to limit the number of replicas, a new Hamiltonian-RexMD method has been developed that is specifically designed to enhance the sampling of peptide and protein conformations by applying various levels of a backbone biasing potential for each replica run. The biasing potential lowers the barrier for backbone dihedral transitions and promotes enhanced peptide backbone transitions along the replica coordinate. The application on several peptide cases including in all cases explicit solvent indicates significantly improved conformational sampling when compared with standard MD simulations. This was achieved with a very modest number of 5-7 replicas for each simulation system making it ideally suited for peptide and protein folding simulations as well as refinement of protein model structures in the presence of explicit solvent. 相似文献
18.
Mizuguchi M Matsuura A Nabeshima Y Masaki K Watanabe M Aizawa T Demura M Nitta K Mori Y Shinoda H Kawano K 《Proteins》2005,61(2):356-365
The N-terminal half of the alpha-domain (residues 1 to 34) is more important for the stability of the acid-induced molten globule state of alpha-lactalbumin than the C-terminal half (residues 86 to 123). The refolding and unfolding kinetics of a chimera, in which the amino acid sequence of residues 1 to 34 was from human alpha-lactalbumin and the remainder of the sequence from bovine alpha-lactalbumin, were studied by stopped-flow tryptophan fluorescence spectroscopy. The chimeric protein refolded and unfolded substantially faster than bovine alpha-lactalbumin. The stability of the molten globule state formed by the chimera was greater than that of bovine alpha-lactalbumin, and the hydrophobic surface area buried inside of the molecule in the molten globule state was increased by the substitution of residues 1 to 34. Peptide fragments corresponding to the A- and B-helix of the chimera showed higher helix propensity than those of the bovine protein, indicating the contribution of local interactions to the high stability of the molten globule state of the chimera. Moreover, the substitution of residues 1-34 decreased the free energy level of the transition state and increased hydrophobic surface area buried inside of the molecule in the transition state. Our results indicate that local interactions as well as hydrophobic interactions formed in the molten globule state are important in guiding the subsequent structural formation of alpha-lactalbumin. 相似文献
19.
Denaturant mediated unfolding of both native and molten globule states of maltose binding protein are accompanied by large deltaCp's. 下载免费PDF全文
S. Sheshadri G. M. Lingaraju R. Varadarajan 《Protein science : a publication of the Protein Society》1999,8(8):1689-1695
Maltose binding protein (MBP) is a large, monomeric two domain protein containing 370 amino acids. In the absence of denaturant at neutral pH, the protein is in the native state, while at pH 3.0 it forms a molten globule. The molten globule lacks a tertiary circular dichroism signal but has secondary structure similar to that of the native state. The molten globule binds 8-anilino-1-naphthalene sulfonate (ANS). The unfolding thermodynamics of MBP at both pHs were measured by carrying out a series of isothermal urea melts at temperatures ranging from 274-329 K. At 298 K, values of deltaGdegrees , deltaCp, and Cm were 3.1+/-0.2 kcal mol(-1), 5.9+/-0.8 kcal mol(-1) K(-1) (15.9 cal (mol-residue)(-1) K(-1)), and 0.8 M, respectively, at pH 3.0 and 14.5+/-0.4 kcal mol(-1), 8.3+/-0.7 kcal mol(-1) K(-1) (22.4 kcal (mol-residue)(-1) K(-1)), and 3.3 M, respectively, at pH 7.1. Guanidine hydrochloride denaturation at pH 7.1 gave values of deltaGdegrees and deltaCp similar to those obtained with urea. The m values for denaturation are strongly temperature dependent, in contrast to what has been previously observed for small globular proteins. The value of deltaCp per mol-residue for the molten globule is comparable to corresponding values of deltaCp for the unfolding of typical globular proteins and suggests that it is a highly ordered structure, unlike molten globules of many small proteins. The value of deltaCp per mol-residue for the unfolding of the native state is among the highest currently known for any protein. 相似文献
20.
Arai M Ito K Inobe T Nakao M Maki K Kamagata K Kihara H Amemiya Y Kuwajima K 《Journal of molecular biology》2002,321(1):121-132
To monitor the fast compaction process during protein folding, we have used a stopped-flow small-angle X-ray scattering technique combined with a two-dimensional charge-coupled device-based X-ray detector that makes it possible to improve the signal-to-noise ratio of data dramatically, and measured the kinetic refolding reaction of alpha-lactalbumin. The results clearly show that the radius of gyration and the overall shape of the kinetic folding intermediate of alpha-lactalbumin are the same as those of the molten globule state observed at equilibrium. Thus, the identity between the kinetic folding intermediate and the equilibrium molten globule state is firmly established. The present results also suggest that the folding intermediate is more hydrated than the native state and that the hydrated water molecules are dehydrated when specific side-chain packing is formed during the change from the molten globule to the native state. 相似文献