首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Mesenchymal stem/stromal cells (MSCs) are extensively studied as cell-therapy agents for neurological diseases. Recent studies consider exosomes secreted by MSCs as important mediators for MSCs’ neuroprotective functions. Exosomes transfer functional molecules including proteins, lipids, metabolites, DNAs, and coding and non-coding RNAs from MSCs to their target cells. Emerging evidence shows that exosomal microRNAs (miRNAs) play a key role in the neuroprotective properties of these exosomes by targeting several genes and regulating various biological processes. Multiple exosomal miRNAs have been identified to have neuroprotective effects by promoting neurogenesis, neurite remodeling and survival, and neuroplasticity. Thus, exosomal miRNAs have significant therapeutic potential for neurological disorders such as stroke, traumatic brain injury, and neuroinflammatory or neurodegenerative diseases and disorders. This review discusses the neuroprotective effects of selected miRNAs (miR-21, miR-17-92, miR-133, miR-138, miR-124, miR-30, miR146a, and miR-29b) and explores their mechanisms of action and applications for the treatment of various neurological disease and disorders. It also provides an overview of state-of-the-art bioengineering approaches for isolating exosomes, optimizing their yield and manipulating the miRNA content of their cargo to improve their therapeutic potential.  相似文献   

2.
Exosomes, small extracellular vesicles ranging from 30 to 150 nm, are secreted by various cell types, including tumour cells. Recently, microRNAs (miRNAs) were identified to be encapsulated and hence protected from degradation within exosomes. These exosomal miRNAs can be horizontally transferred to target cells, in which they subsequently modulate biological processes. Increasing evidence indicates that exosomal miRNAs play a critical role in modifying the microenvironment of lung cancers, possibly facilitating progression, invasion, angiogenesis, metastasis and drug resistance. In this review, we summarize the novel findings on exosomal miRNA functions during lung cancer initiation and progression. In addition, we highlight their potential role and challenges as biomarkers in lung cancer diagnosis, prognosis and drug resistance and as therapeutic agents.  相似文献   

3.
Blood vessels rupture or occlusion in brain results in stroke. Stroke is the major reason for mortality and dysfunction worldwide. Despite several attempts, there are no any approved therapeutic approaches for stroke subjects. The most neuroprotective agents showed the positive effects in preclinical reports, while there are no significant therapeutic impacts in the clinical trials. MicroRNAs (miRNAs) are small noncoding RNAs which involved in the modulation of a variety of cellular and molecular pathways. Given that deregulation of these molecules is related to initiation and progression of stroke. Exosomes are nano-carriers which are able to transfer different cargos such as miRNAs to recipient cells. Increasing evidence revealed that exosomal miRNAs are one of very important factors which are involved in the pathogenesis of stroke. Hence, more understanding about the role of exosomal miRNAs in stroke pathogenesis could contribute in discovering and developing new therapeutic approaches. Moreover, it has been proved the exosomal miRNAs could be used as noninvasive biomarkers in diagnosis and monitoring response to therapy in subjects with stroke. Herein for first time, we summarized different exosomal miRNAs involved in pathogenesis of stroke.  相似文献   

4.
It has recently been established that exosomes can mediate intercellular cross-talk under normal and pathological conditions through the transfer of specific miRNAs. As muscle cells secrete exosomes, we addressed the question of whether skeletal muscle (SkM) exosomes contained specific miRNAs, and whether they could act as “endocrine signals” during myogenesis. We compared the miRNA repertoires found in exosomes released from C2C12 myoblasts and myotubes and found that 171 and 182 miRNAs were exported into exosomes from myoblasts and myotubes, respectively. Interestingly, some miRNAs were expressed at higher levels in exosomes than in their donor cells and vice versa, indicating a selectivity in the incorporation of miRNAs into exosomes. Moreover miRNAs from C2C12 exosomes were regulated during myogenesis. The predicted target genes of regulated exosomal miRNAs are mainly involved in the control of important signaling pathways for muscle cell differentiation (e.g., Wnt signaling pathway). We demonstrated that exosomes from myotubes can transfer small RNAs (C. elegans miRNAs and siRNA) into myoblasts. Moreover, we present evidence that exosome miRNAs secreted by myotubes are functionally able to silence Sirt1 in myoblasts. As Sirt1 regulates muscle gene expression and differentiation, our results show that myotube–exosome miRNAs could contribute to the commitment of myoblasts in the process of differentiation. Until now, myokines in muscle cell secretome provided a conceptual basis for communication between muscles. Here, we show that miRNA exosomal transfer would be a powerful means by which gene expression is orchestrated to regulate SkM metabolic homeostasis.  相似文献   

5.
Cardiovascular diseases (CVDs) are still a major cause of people deaths worldwide, and mesenchymal stem cells (MSCs) transplantation holds great promise due to its capacity to differentiate into cardiovascular cells and secrete protective cytokines, which presents an important mechanism of MSCs therapy for CVDs. Although the capability of MSCs to differentiate into cardiomyocytes (CMCs), endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) has been well recognized in massive previous experiments both in vitro and in vivo, low survival rate of transplanted MSCs in recipient hearts suggests that therapeutic effects of MSCs transplantation might be also correlated with other underlying mechanisms. Notably, recent studies uncovered that MSCs were able to secret cholesterol-rich, phospholipid exosomes which were enriched with microRNAs (miRNAs). The released exosomes from MSCs acted on hearts and vessels, and then exerted anti-apoptosis, cardiac regeneration, anti-cardiac remodeling, anti-inflammatory effects, neovascularization and anti-vascular remodeling, which are considered as novel molecular mechanisms of therapeutic potential of MSCs transplantation. Here we summarized recent advances about the role of exosomes in MSCs therapy for CVDs, and discussed exosomes as a novel approach in the treatment of CVDs in the future.  相似文献   

6.
Exosomes are 40–100 nm nano-sized vesicles that are released from many cell types into the extracellular space. Such vesicles are widely distributed in various body fluids. Recently,m RNAs and micro RNAs(mi RNAs) have been identified in exosomes, which can be taken up by neighboring or distant cells and subsequently modulate recipient cells. This suggests an active sorting mechanism of exosomal mi RNAs, since the mi RNA profiles of exosomes may differ from those of the parent cells. Exosomal mi RNAs play an important role in disease progression, and can stimulate angiogenesis and facilitate metastasis in cancers. In this review, we will introduce the origin and the trafficking of exosomes between cells, display current research on the sorting mechanism of exosomal mi RNAs, and briefly describe how exosomes and their mi RNAs function in recipient cells.Finally, we will discuss the potential applications of these mi RNA-containing vesicles in clinical settings.  相似文献   

7.
Atrial fibrillation (AF) is one of the most frequent cardiac arrhythmias, and atrial remodeling is related to the progression of AF. Although several therapeutic approaches have been presented in recent years, the continuously increasing mortality rate suggests that more advanced strategies for treatment are urgently needed. Exosomes regulate pathological processes through intercellular communication mediated by microribonucleic acid (miRNA) in various cardiovascular diseases (CVDs). Exosomal miRNAs associated with signaling pathways have added more complexity to an already complex direct cell-to-cell interaction. Exosome delivery of miRNAs is involved in cardiac regeneration and cardiac protection. Recent studies have found that exosomes play a critical role in the diagnosis and treatment of cardiac fibrosis. By improving exosome stability and modifying surface epitopes, specific pharmaceutical agents can be supplied to improve tropism and targeting to cells and tissues in vivo. Exosomes harboring miRNAs may have clinical utility in cell-free therapeutic approaches and may serve as prognostic and diagnostic biomarkers for AF. Currently, limitations challenge pharmaceutic design, therapeutic utility and in vivo targeted delivery to patients. The aim of this article is to review the developmental features of AF associated with exosomal miRNAs and relate them to underlying mechanisms.  相似文献   

8.
9.
Mycoplasma gallisepticum (MG) can cause chronic respiratory disease (CRD) in chickens. While several studies have reported the inflammatory functions of microRNAs during MG infection, the mechanism by which exosomal miRNAs regulate MG-induced inflammation remains to be elucidated. The expression of exosome-microRNA derived from MG-infected chicken type II pneumocytes (CP-II) was screened, and the target genes and function of differentially expressed miRNAs (DEGs) were predicted. To verify the role of exosomal gga-miR-451, Western blot, ELISA and RT-qPCR were used in this study. The results showed that a total of 722 miRNAs were identified from the two exosomal small RNA (sRNA) libraries, and 30 miRNAs (9 up-regulated and 21 down-regulated) were significantly differentially expressed. The target miRNAs were significantly enriched in the treatment group, such as cell cycle, Toll-like receptor signalling pathway and MAPK signalling pathway. The results have also confirmed that gga-miR-451-absent exosomes derived from MG-infected CP-II cells increased inflammatory cytokine production in chicken fibroblast cells (DF-1), and wild-type CP-II cell–derived exosomes displayed protective effects. Collectively, our work suggests that exosomes from MG-infected CP-II cells alter the dynamics of the DF-1 cells, and may contribute to pathology of the MG infection via exosomal gga-miR-451 targeting YWHAZ involving in inflammation.  相似文献   

10.
As one of the most prevalent heritable cardiovascular diseases, dilated cardiomyopathy (DCM) induces cardiac insufficiency and dysfunction. Although genetic mutation has been identified one of the causes of DCM, the usage of genetic biomarkers such as RNAs for DCM early diagnosis is still being overlooked. In addition, the alternation of RNAs could reflect the progression of the diseases, as an indicator for the prognosis of patients. Therefore, it is beneficial to develop genetic based diagnostic tool for DCM. RNAs are often unstable within circulatory system, leading to the infeasibility for clinical application. Recently discovered exosomal miRNAs have the stability that is then need for diagnostic purpose. Hence, fully understanding of the exosomal miRNA within DCM patients is vital for clinical translation. In this study, we employed the next generation sequencing based on the plasma exosomal miRNAs to comprehensively characterize the miRNAs expression in plasma exosomes from DCM patients exhibiting chronic heart failure (CHF) compared to healthy individuals. A complex landscape of differential miRNAs and target genes in DCM with CHF patients were identified. More importantly, we discovered that 92 differentially expressed miRNAs in DCM patients undergoing CHF were correlated with several enriched pathways, including oxytocin signalling pathway, circadian entrainment, hippo signalling pathway-multiple species, ras signalling pathway and morphine addiction. This study reveals the miRNA expression profiles in plasma exosomes in DCM patients with CHF, and further reveal their potential roles in the pathogenesis of it, presenting a new direction for clinical diagnosis and management of DCM patients with CHF.  相似文献   

11.
Exosomes have recently emerged as a pivotal mediator of many physiological and pathological processes. However, the role of exosomes in proliferative vitreoretinopathy (PVR) has not been reported. In this study, we aimed to investigate the role of exosomes in PVR. Transforming growth factor beta 2 (TGFß‐2) was used to induce epithelial‐mesenchymal transition (EMT) of retinal pigment epithelial (RPE) cells, as an in vitro model of PVR. Exosomes from normal and EMTed RPE cells were extracted and identified. We incubated extracted exosomes with recipient RPE cells, and co‐cultured EMTed RPE cells and recipient RPE cells in the presence of the exosome inhibitor GW4869. Both experiments suggested that there are further EMT‐promoting effects of exosomes from EMTed RPE cells. MicroRNA sequencing was also performed to identify the miRNA profiles in exosomes from both groups. We identified 34 differentially expressed exosomal miRNAs (P <. 05). Importantly, miR‐543 was found in exosomes from EMTed RPE cells, and miR‐543‐enriched exosomes significantly induced the EMT of recipient RPE cells. Our study demonstrates that exosomal miRNA is differentially expressed in RPE cells during EMT and that these exosomal miRNAs may play pivotal roles in EMT induction. Our results highlight the importance of exosomes as cellular communicators within the microenvironment of PVR.  相似文献   

12.
急性髓系白血病(acute myeloid leukemia,AML)是一类造血干细胞的恶性克隆性疾病,目前的诊断方法不利于疾病的早期发现,且诊断结果重复性较差。已有大量研究显示,细胞外microRNA(miRNA或miR)富集在外泌体(exosome)中,且受其表面膜的保护而具有很好的稳定性,是理想的分子标志物。目前,多种实体肿瘤均已检测到肿瘤特异性外泌体miRNA(exosomal miRNA)。然而,在AML患者中未见此外泌体miRNA报道。本研究探讨急性髓系白血病血浆外泌体miRNA表达谱差异及新miRNA序列。采用solexa高通量测序技术对7例AML患者(AML组)及7例健康对照者(对照组)血浆外泌体miRNAs进行测序,利用Mireap预测软件进行新miRNAs分析,通过edger差异分析软件筛选组间差异miRNA,获得211个已知的差异表达miRNAs以及2个新miRNAs,选择4个差异表达的miRNAs:miR-155-5p、miR-335-5p、miR-451a及xxx-m0038 5p(新miRNA),在两组(各23例)的血浆外泌体样本中,进行实时荧光定量PCR(qRT-PCR)验证,验证结果与测序结果一致。对差异表达的外泌体miRNA进行靶基因预测及其GO(Gene Ontology)和信号通路富集分析,发现靶基因聚集的生物学功能多数参与生物进展过程的调控。靶基因主要富集在FoxO、MAPK、Hippo信号通路以及HTLV-I感染等。结果显示,AML患者与健康对照者的血浆外泌体miRNA存在着差异性表达。差异性表达的miRNA特异性很高,对进一步阐明AML白血病发生与发展的分子机制、研发新的无创诊断方法、新的诊断标记物和有效治疗AML的方法具有十分重要和深远的意义。  相似文献   

13.
14.
Traditional Chinese medicine (TCM) are both historically important therapeutic agents and important source of new drugs. Halofuginone (HF), a small molecule alkaloid derived from febrifugine, has been shown to exert strong antiproliferative effects that differ markedly among various cell lines. However, whether HF inhibits MCF-7 cell growth in vitro and underlying mechanisms of this process are not yet clear. Here, we offer the strong evidence of the connection between HF treatment, exosome production and proliferation of MCF-7 cells. Our results showed that HF inhibits MCF-7 cell growth in both time- and dose-dependent manner. Further microRNA (miRNA) profiles analysis in HF treated and nontreated MCF-7 cell and exosomes observed that six miRNAs are particularly abundant and sorted in exosomes. miRNAs knockdown experiment in exosomes and the MCF-7 growth inhibition assay showed that exosomal microRNA-31 (miR-31) modulates MCF-7 cells growth by specially targeting the histone deacetylase 2 (HDAC2), which increases the levels of cyclin-dependent kinases 2 (CDK2) and cyclin D1 and suppresses the expression of p21. In conclusion, these data indicate that inhibition of exosome production reduces exosomal miR-31, which targets the HDAC2 and further regulates the level of cell cycle regulatory proteins, contributing to the anticancer functions of HF. Our data suggest a new role for HF and the exosome production in tumorigenesis and may provide novel insights into prevention and treatment of breast cancer.  相似文献   

15.
MicroRNAs (miRNAs) are stable, small non-coding RNAs that modulate many downstream target genes. Recently, circulating miRNAs have been detected in various body fluids and within exosomes, prompting their evaluation as candidate biomarkers of diseases, especially cancer. Kaposi''s sarcoma (KS) is the most common AIDS-associated cancer and remains prevalent despite Highly Active Anti-Retroviral Therapy (HAART). KS is caused by KS-associated herpesvirus (KSHV), a gamma herpesvirus also associated with Primary Effusion Lymphoma (PEL). We sought to determine the host and viral circulating miRNAs in plasma, pleural fluid or serum from patients with the KSHV-associated malignancies KS and PEL and from two mouse models of KS. Both KSHV-encoded miRNAs and host miRNAs, including members of the miR-17–92 cluster, were detectable within patient exosomes and circulating miRNA profiles from KSHV mouse models. Further characterization revealed a subset of miRNAs that seemed to be preferentially incorporated into exosomes. Gene ontology analysis of signature exosomal miRNA targets revealed several signaling pathways that are known to be important in KSHV pathogenesis. Functional analysis of endothelial cells exposed to patient-derived exosomes demonstrated enhanced cell migration and IL-6 secretion. This suggests that exosomes derived from KSHV-associated malignancies are functional and contain a distinct subset of miRNAs. These could represent candidate biomarkers of disease and may contribute to the paracrine phenotypes that are a characteristic of KS.  相似文献   

16.
Exosome-encapsulated microRNAs (miRNAs) have been identified as potential biomarkers in autoimmune diseases. However, little is known about the role of exosome-delivered miRNAs in rheumatoid arthritis (RA). In this study, we investigated the profile of specific exosomal miRNAs by microarray analysis of serum exosomes from three patients with RA and three healthy controls. Quantitative real-time PCR (qRT-PCR) was performed to validate the aberrantly expressed exosomal miRNAs. A total of 20 exosome-encapsulated miRNAs were identified to be differently expressed in the serum of patients with RA compared with controls. Interestingly, we found that exosome-encapsulated miR-6089 was significantly decreased after validation by qRT-PCR in serum exosomes from 76 patients with RA and 20 controls. Besides, miR-6089 could inhibit lipopolysaccharide (LPS)-induced cell proliferation and activation of macrophage-like THP-1 cells. TLR4 was a direct target for miR-6089. MiR-6089 regulated the generation of IL-6, IL-29, and TNF-α by targetedly controlling TLR4 signaling. In conclusion, exosome-encapsulated miR-6089 regulates LPS/TLR4-mediated inflammatory response, which may serve as a novel, promising biomarker in RA.  相似文献   

17.
Ovarian hyperstimulation syndrome (OHSS) is one of the most dangerous iatrogenic complications in controlled ovarian hyperstimulation (COH). The exact molecular mechanism that induces OHSS remains unclear. In recent years, accumulating evidence found that exosomal miRNAs participate in many diseases of reproductive system. However, the specific role of miRNAs, particularly the follicular fluid-derived exosomal miRNAs in OHSS remains controversial. To identify differentially expressed follicular fluid exosomal miRNAs from OHSS and non-OHSS patients, the analysis based on miRNA-sequence was conducted. The levels of 291 miRNAs were significantly differed in exosomes from OHSS patients compared with normal control, and exosomal miR-27 was one of the most significantly down-regulated miRNAs in the OHSS group. By using MiR-27 mimic, we found it could increase ROS stress and apoptosis by down-regulating the expression of p-ERK/Nrf2 pathway by negatively regulating SPRY2. These data demonstrate that exosomal miRNAs are differentially expressed in follicular fluid between patients with and without OHSS, and follicular fluid exosomal miR-27 may involve in the pathological process of OHSS development.  相似文献   

18.

Background

Exosomes play a major role in cell-to-cell communication, targeting cells to transfer exosomal molecules including proteins, mRNAs, and microRNAs (miRNAs) by an endocytosis-like pathway. miRNAs are small noncoding RNA molecules on average 22 nucleotides in length that regulate numerous biological processes including cancer pathogenesis and mediate gene down-regulation by targeting mRNAs to induce RNA degradation and/or interfering with translation. Recent reports imply that miRNAs can be stably detected in circulating plasma and serum since miRNAs are packaged by exosomes to be protected from RNA degradation. Thus, profiling exosomal miRNAs are in need to clarify intercellular signaling and discover a novel disease marker as well.

Methodology/Principal Findings

Exosomes were isolated from cultured cancer cell lines and their quality was validated by analyses of transmission electron microscopy and western blotting. One of the cell lines tested, a metastatic gastric cancer cell line, AZ-P7a, showed the highest RNA yield in the released exosomes and distinctive shape in morphology. In addition, RNAs were isolated from cells and culture media, and profiles of these three miRNA fractions were obtained using microarray analysis. By comparing signal intensities of microarray data and the following validation using RT-PCR analysis, we found that let-7 miRNA family was abundant in both the intracellular and extracellular fractions from AZ-P7a cells, while low metastatic AZ-521, the parental cell line of AZ-P7a, as well as other cancer cell lines showed no such propensity.

Conclusions/Significance

The enrichment of let-7 miRNA family in the extracellular fractions, particularly, in the exosomes from AZ-P7a cells may reflect their oncogenic characteristics including tumorigenesis and metastasis. Since let-7 miRNAs generally play a tumor-suppressive role as targeting oncogenes such as RAS and HMGA2, our results suggest that AZ-P7a cells release let-7 miRNAs via exosomes into the extracellular environment to maintain their oncogenesis.  相似文献   

19.
There is an increasing interest in using microRNAs (miRNA) as biomarkers in autoimmune diseases. They are easily accessible in many body fluids but it is controversial if they are circulating freely or are encapsulated in microvesicles, particularly exosomes. We investigated if the majority of miRNas in serum and saliva are free-circulating or concentrated in exosomes. Exosomes were isolated by ultracentrifugation from fresh and frozen human serum and saliva. The amount of selected miRNAs extracted from the exosomal pellet and the exosome-depleted serum and saliva was compared by quantitative RT-PCR. Some miRNAs tested are ubiquitously expressed, others were previously reported as biomarkers. We included miRNAs previously reported to be free circulating and some thought to be exosome specific. The purity of exosome fraction was confirmed by electronmicroscopy and western blot. The concentration of miRNAs was consistently higher in the exosome pellet compared to the exosome-depleted supernatant. We obtained the same results using an equal volume or equal amount of total RNA as input of the RT-qPCR. The concentration of miRNA in whole, unfractionated serum, was between the exosomal pellet and the exosome-depleted supernatant. Selected miRNAs, which were detectable in exosomes, were undetectable in whole serum and the exosome-depleted supernantant. Exosome isolation improves the sensitivity of miRNA amplification from human biologic fluids. Exosomal miRNA should be the starting point for early biomarker studies to reduce the probability of false negative results involving low abundance miRNAs that may be missed by using unfractionated serum or saliva.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号