共查询到20条相似文献,搜索用时 15 毫秒
1.
Xuyang Wang Jinyu Pan Dian Liu Mingjun Zhang Xiaowei Li Jingjing Tian Ming Liu Tao Jin Fengshuang An 《Journal of cellular and molecular medicine》2019,23(8):5349-5359
Nicorandil exerts myocardial protection through its antihypoxia and antioxidant effects. Here, we investigated whether it plays an anti‐apoptotic role in diabetic cardiomyopathy. Sprague‐Dawley rats were fed with high‐fat diet; then single intraperitoneal injection of streptozotocin was performed. Rats with fasting blood glucose (FBG) higher than 11.1 mmol/L were selected as models. Eight weeks after the models were built, rats were treated with nicorandil (7.5 mg/kg day and 15 mg/kg day respectively) for 4 weeks. H9c2 cardiomyocytes were treated with nicorandil and then stimulated with high glucose (33.3 mmol/L). TUNEL assay and level of bcl‐2, bax and caspase‐3 were measured. 5‐HD was used to inhibit nicorandil. Also, PI3K inhibitor (Miltefosine) and mTOR inhibitor (rapamycin) were used to inhibit PI3K/Akt pathway. The results revealed that nicorandil (both 7.5 mg/kg day and 15mg/kg day) treatment can increase the level of NO in the serum and eNOS in the heart of diabetic rats compared with the untreated diabetic group. Nicorandil can also improve relieve cardiac dysfunction and reduce the level of apoptosis. In vitro experiments, nicorandil (100 µmol) can attenuate the level of apoptosis stimulated by high glucose significantly in H9C2 cardiomyocyte compared with the untreated group. The effect of nicorandil on apoptosis was blocked by 5‐HD, and it was accompanied with inhibition of the phosphorylation of PI3K, Akt, eNOS, and mTOR. After inhibition of PI3K/Akt pathway, the protective effect of nicorandil is restrained. These results verified that as a NO donor, nicorandil can also inhibit apoptosis in diabetic cardiomyopathy which is mediated by PI3K/Akt pathway. 相似文献
2.
Background: Triple-negative breast cancer (TNBC) is a refractory subtype of breast cancer, 25–30% of which have dysregulation in the PI3K/AKT pathway. The present study investigated the anticancer effect of erianin on TNBC cell line and its underlying mechanism.Methods: After treatment with erianin, MTT assay was employed to determine the MDA-MB-231 and EFM-192A cell proliferation, the nucleus morphological changes were observed by DAPI staining. The cell cycle and apoptotic proportion were detected by flow cytometry. Western blot was performed to determine the cell cycle and apoptosis-related protein expression and PI3K pathways. Finally, the antiproliferative activity of erianin was further confirmed by adding or not adding PI3K agonists SC79.Results: Erianin inhibited the proliferation of MDA-MB-231 and EFM-192A cells in a dose-dependent manner, the IC50 were 70.96 and 78.58 nM, respectively. Erianin could cause cell cycle arrest at the G2/M phase, and the expressions of p21 and p27 were up-regulated, while the expressions of CDK1 and Cyclin B1 were down-regulated. Erianin also induced apoptosis via the mitochondrial pathway, with the up-regulation of the expression of Cyto C, PARP, Bax, active form of Caspase-3, and Caspase-9. Furthermore, p-PI3K and p-Akt expression were down-regulated by erianin. After co-incubation with SC79, the cell inhibition rate of erianin was decreased, which further confirmed that the attenuated PI3K/Akt pathway was relevant to the pro-apoptotic effect of erianin.Conclusions: Erianin can inhibit the proliferation of TNBC cells and induce cell cycle arrest and apoptosis, which may ascribe to the abolish the activation of the PI3K/Akt pathway. 相似文献
3.
The PI3K/Akt/mTOR signaling pathway plays a key regulatory function in cell survival, proliferation, migration, metabolism and apoptosis. Aberrant activation of the PI3K/Akt/mTOR pathway is found in many types of cancer and thus plays a major role in breast cancer cell proliferation. In our previous studies, benzo[b]furan derivatives were evaluated for their anticancer activity and the lead compounds identified were 26 and 36. These observations prompted us to investigate the molecular mechanism and apoptotic pathway of these lead molecules against breast cancer cells. Benzo[b]furan derivatives (26 and 36) were evaluated for their antiproliferative activity against human breast cancer cell lines MCF-7 and MDA MB-231. These compounds (26 and 36) have shown potent efficiency against breast cancer cells (MCF-7) with IC50 values 0.057 and 0.051 μM respectively. Cell cycle analysis revealed that these compounds induced cell cycle arrest at G2/M phase in MCF-7 cells. Western blot analysis revealed that these compounds inhibit the PI3K/Akt/mTOR signaling pathway and induced mitochondrial mediated apoptosis in human breast cancer cells (MCF-7). 相似文献
4.
Cervical cancer is common cancer among women with high morbidity. MicroRNAs (miRs) are involved in the progression and development of cervical cancer. This study aimed to explore the effect of miR-99b-5p (miR-99b) on invasion and migration in cervical cancer through the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mechanistic target of rapamycin (mTOR) signaling pathway. The microarray-based analysis was used to screen out differentially expressed miRNAs. Expression of miR-99b, PI3K, AKT, mTOR, and ribosomal protein S6 kinase (p70S6K) was determined in both cervical cancer tissues and paracancerous tissues. Next, alteration of miR-99b expression in cervical cancer was conducted to evaluate levels of PI3K, AKT, mTOR, p70S6K matrix metallopeptidase 2, epithelial cell adhesion molecule, and intercellular adhesion molecule 1, as well as the effect of miR-99b on cell proliferation, invasion, migration, cell cycle distribution, and apoptosis. The results demonstrated that miR-99b expression was decreased and levels of PI3K, AKT, mTOR, and p70S6K were elevated in cervical cancer tissues. More important, overexpressed miR-99b repressed the PI3K/AKT/mTOR signaling pathway, inhibited cell proliferation, invasion, and migration, blocked cell cycle entry, and promoted apoptosis in cervical cancer. These results indicate that miR-99b attenuates the migration and invasion of human cervical cancer cells through downregulation of the PI3K/AKT/mTOR signaling pathway, which provides a therapeutic approach for cervical cancer treatment. 相似文献
5.
Shiyuan Chen Hu Chen Chaowen Yu Ran Lu Tao Song Xiaogao Wang Wenbo Tang Yong Gao 《Journal of cellular biochemistry》2019,120(9):14405-14413
6.
ABSTRACT Polycystic ovary syndrome (PCOS) is recognized as a general endocrine disease and reproductive disorder. Although evidence indicates that PCOS has a complex etiology and genetic basis, the pathogenic mechanisms and signal pathway in PCOS remain unclear. In this study, the normal structure of follicle and corpus luteum were observed, and no cyst nor hyperemia was observed under the light microscopic study with hematoxylin and eosin (H&E) staining. Eestosterone and progesterone were evaluated by radioimmunoassay in rat serum. The alterations of proliferative ability and cell cycle distribution of each group were assessed by Cell Counting Kit-8 (CCK8) assay and flow cytometry. The protein expression of p-mTOR/mTOR, p-PI3K/PI3K, p-AKT/AKT, and GAPDH were analyzed by western blotting. Both doses of PLB could benefit the ovarian morphology and polycystic property. PLBinduced a suppress effect on the proliferation of rat ovarian granulosa cells. In addition, PLB also induced concentration-dependent apoptosis in rat ovarian granulosa cells. The rat ovarian granulosa cells treated with PLB that the expression levels of p-AKT, p-mTOR, and p-PI3K were significantly decreased in a concentration-dependent manner. PLB not only plays a critical role in attenuating the pathology and polycystic property changes in the ovary but can also induce rat ovarian granulosa cell apoptosis through the PI3K/Akt/mTOR signal pathway. This study showed the innovative role of PLB in the pathogenesis of PCOS and provides a new therapeutic modality for the treatment of PCOS. 相似文献
7.
Dae‐Hee Lee Miroslaw‐Jerzy Szczepanski Yong J. Lee 《Journal of cellular biochemistry》2009,106(6):1113-1122
We observed that treatment of prostate cancer cells for 24 h with magnolol, a phenolic component extracted from the root and stem bark of the oriental herb Magnolia officinalis, induced apoptotic cell death in a dose‐ and time‐dependent manner. A sustained inhibition of the major survival signal, Akt, occurred in magnolol‐treated cells. Treatment of PC‐3 cells with an apoptosis‐inducing concentration of magnolol (60 µM) resulted in a rapid decrease in the level of phosphorylated Akt leading to inhibition of its kinase activity. Magnolol treatment (60 µM) also caused a decrease in Ser(136) phosphorylation of Bad (a proapoptotic protein), which is a downstream target of Akt. Protein interaction assay revealed that Bcl‐xL, an anti‐apoptotic protein, was associated with Bad during treatment with magnolol. We also observed that during treatment with magnolol, translocation of Bax to the mitochondrial membrane occurred and the translocation was accompanied by cytochrome c release, and cleavage of procaspase‐8, ‐9, ‐3, and poly(ADP‐ribose) polymerase (PARP). Similar results were observed in human colon cancer HCT116Bax+/? cell line, but not HCT116Bax?/? cell line. Interestingly, at similar concentrations (60 µM), magnolol treatment did not affect the viability of normal human prostate epithelial cell (PrEC) line. We also observed that apoptotic cell death by magnolol was associated with significant inhibition of pEGFR, pPI3K, and pAkt. These results suggest that one of the mechanisms of the apoptotic activity of magnolol involves its effect on epidermal growth factor receptor (EGFR)‐mediated signaling transduction pathways. J. Cell. Biochem. 106: 1113–1122, 2009. © 2009 Wiley‐Liss, Inc. 相似文献
8.
Peipei Peng Jingwei Xiong Hongquan Dong Lixia Wang Zhengnian Ding 《Cell biochemistry and function》2016,34(1):42-47
Sevoflurane is a widely used anaesthetic agent, including in anaesthesia of children and infants. Recent studies indicated that the general anaesthesia might cause the cell apoptosis in the brain. This issue raises the concerns about the neuronal toxicity induced by the application of anaesthetic agents, especially in the infants and young children. In this study, we used Morris water maze, western blotting and immunohistochemistry to elucidate the role of α‐lipoic acid in the inhibition of neuronal apoptosis. We found that sevoflurane led to the long‐term cognitive impairment in the young rats. This adverse effect may be caused by the neuronal death in the hippocampal region, mediated through PI3K/Akt signalling pathway. We also showed that α‐lipoic acid offset the effect of sevoflurane on the neuronal apoptosis and cognitive dysfunction. This study elucidated the potential clinical role of α‐lipoic acid, providing a promising way in the prevention and treatment of long‐term cognitive impairment induced by sevoflurane general anesthesia. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
9.
10.
Chunmei Guo Chao Gao Xinxin Lv Dongting Zhao Frederick T. Greenaway Lihong Hao Yuxiang Tian Shuqing Liu Ming-Zhong Sun 《Journal of cellular and molecular medicine》2021,25(5):2714-2724
Abnormal glucose metabolism may contribute to cancer progression. As a member of the CRK (v-crk sarcoma virus CT10 oncogene homologue) adapter protein family, CRKL (CRK-like) associated with the development and progression of various tumours. However, the exact role and underlying mechanism of CRKL on energy metabolism remain unknown. In this study, we investigated the effect of CRKL on glucose metabolism of hepatocarcinoma cells. CRKL and PI3K were found to be overexpressed in both hepatocarcinoma cells and tissues; meanwhile, CRKL up-regulation was positively correlated with PI3K up-regulation. Functional investigations revealed that CRKL overexpression promoted glucose uptake, lactate production and glycogen synthesis of hepatocarcinoma cells by up-regulating glucose transporters 1 (GLUT1), hexokinase II (HKII) expression and down-regulating glycogen synthase kinase 3β (GSK3β) expression. Mechanistically, CRKL promoted glucose metabolism of hepatocarcinoma cells via enhancing the CRKL-PI3K/Akt-GLUT1/HKII-glucose uptake, CRKL-PI3K/Akt-HKII-glucose-lactate production and CRKL-PI3K/Akt-Gsk3β-glycogen synthesis. We demonstrate CRKL facilitates HCC malignancy via enhancing glucose uptake, lactate production and glycogen synthesis through PI3K/Akt pathway. It provides interesting fundamental clues to CRKL-related carcinogenesis through glucose metabolism and offers novel therapeutic strategies for hepatocarcinoma. 相似文献
11.
目的探讨肿瘤转移相关因子RhoGDI2与PI3K/Akt/mTOR信号通路在肺癌侵袭转移过程中的作用及相关机制。方法利用PI3K/Akt/mTOR信号通路上特异性的抑制剂,采用MTT法,伤口愈合实验及侵袭实验观察不同浓度药物对肺癌95D细胞生长侵袭转移能力的影响,通过Western Blot方法观察RhoGDI2蛋白水平的变化。结果PI3K抑制剂LY294002及mTOR抑制剂Rapamycin都能抑制肺癌细胞95D的侵袭转移能力,联合应用抑制作用更强。PI3K抑制剂LY294002处理组RhoGDI2蛋白的表达量增加,且随浓度增加RhoGDI2蛋白表达也增加。mTOR抑制剂Rapamycin组,在低浓度时增加RhoGDI2蛋白的表达,但增大Rapamycin的浓度,RhoGDI2蛋白的表达反而降低。低浓度LY294002组和Rapa-mycin组联合应用可以明显增加RhoGDI2蛋白的表达。结论PI3K/Akt/mTOR信号通路中Akt的活化与RhoGDI2密切相关,RhoGDI2可能直接或间接通过与Akt的相互作用参与调节肺癌的侵袭转移的过程。 相似文献
12.
Yan Zhou Panpan Geng Yalin Liu Jinyuan Wu Hongtu Qiao Yuping Xie Na Yin Linlin Chen Xiaochen Lin Yang Liu Shan Yi Guangming Zhang Hongjun Li Maosheng Sun 《生物化学与生物物理学报:疾病的分子基础》2018,1864(1):60-68
Rotaviruses are double-stranded RNA viruses that are a major cause of viral diarrhea in infants. Examining virus–host cell interaction is important for elucidating mechanisms of virus proliferation in host cells. Viruses can create an environment that promotes their survival and self-proliferation by encoding miRNAs or miRNA-like molecules that target various host cell. However, it remains unclear whether RNA viruses encode viral miRNAs, and their regulation mechanisms are largely unknown. We previously performed deep sequencing analysis to investigate rotavirus-encoded miRNAs, and identified the small RNA molecule Chr17_1755, which we named RV-vsRNA1755. In our present study, we determined that RV-vsRNA1755 is encoded by the rotavirus NSP4 gene and that it targets the host cell IGF1R, which is part of the PI3K/Akt pathway. We further explored the biological characteristics and functions of RV-vsRNA1755.Our results suggest that rotavirus adapts to manipulate PI3K/Akt signaling at early phases of infection. RV-vsRNA1755 targets IGF1R, blockading the PI3K/Akt pathway and triggering autophagy, but it ultimately inhibits autophagy maturation. A mechanism through which rotavirus encodes a virus-like small RNA (RV-vsRNA1755) that triggers autophagy by targeting the host cell IGF1R gene was revealed. These data provide a theoretical basis for therapeutic drug screening targeting RV-vsRNA1755. 相似文献
13.
Zhi Wang Longxiang Wu Shiyu Tong Xiheng Hu Xiongbing Zu Yuan Li 《Animal cells and systems.》2016,20(2):77-85
Resveratrol possesses a wide spectrum of pharmacological properties and has been an ideal alternative drug for the treatment of different cancers, including prostate cancer. However, the mechanisms by which resveratrol inhibits the growth of prostate cancer are still not fully elucidated. To understand the effect of resveratrol on the apoptosis and the epithelial-to-mesenchymal transition (EMT) of prostate cancer as well as its related mechanism, we investigated the potential use of resveratrol in PC-3 prostate cancer cells in vitro using real-time PCR, fluorescence-activated cell sorting, Western blotting, etc. Resveratrol suppresses the PC-3 prostate cancer cell growth and induces apoptosis. Resveratrol also influences the expression of EMT-related proteins (increased E-cadherin and decreased Vimentin expression). Finally, resveratrol also suppressed Akt phosphorylation in PC-3 cells. This study indicates that resveratrol may be a potential anti-cancer treatment for prostate cancer; moreover, it provides new evidence that resveratrol suppresses prostate cancer growth and metastasis. 相似文献
14.
Xiaoyu Yi Chao Zhang Baojie Liu Guojun Gao Yaqi Tang Yongzheng Lu Zhifang Pan Guohui Wang Weiguo Feng 《Journal of cellular and molecular medicine》2023,27(3):403-411
Prostate cancer (PCa) is one of the most common malignancies in men. Ribosomal protein L22-like1 (RPL22L1), a component of the ribosomal 60 S subunit, is associated with cancer progression, but the role and potential mechanism of RPL22L1 in PCa remain unclear. The aim of this study was to investigate the role of RPL22L1 in PCa progression and the mechanisms involved. Bioinformatics and immunohistochemistry analysis showed that the expression of RPL22L1 was significantly higher in PCa tissues than in normal prostate tissues. The cell function analysis revealed that RPL22L1 significantly promoted the proliferation, migration and invasion of PCa cells. The data of xenograft tumour assay suggested that the low expression of RPL22L1 inhibited the growth and invasion of PCa cells in vivo. Mechanistically, the results of Western blot proved that RPL22L1 activated PI3K/Akt/mTOR pathway in PCa cells. Additionally, LY294002, an inhibitor of PI3K/Akt pathway, was used to block this pathway. The results showed that LY294002 remarkably abrogated the oncogenic effect of RPL22L1 on PCa cell proliferation and invasion. Taken together, our study demonstrated that RPL22L1 is a key gene in PCa progression and promotes PCa cell proliferation and invasion via PI3K/Akt/mTOR pathway, thus potentially providing a new target for PCa therapy. 相似文献
15.
肿瘤对人类的生存危害极大,恶性肿瘤的治疗一直是世界性的难题。肿瘤血管生成是肿瘤赖以生长、转移的基础,受多种因子的调节。目前发现有多条信号网络参与调控肿瘤血管生成,PI3K/Akt是其中比较重要的一条信号传导途径,该通路与肿瘤的发生发展密切相关。本文介绍了PI3K/Akt信号通路的结构组成与活性调控,并重点阐述PI3K/Akt信号途径与肿瘤血管生成的关系。 相似文献
16.
Sapylin (OK-432) revealed biological properties in cancers. In this study, the effect of sapylin on lung cancer cell A549 was investigated. A549 cell lines were treated with sapylin (0.1, 0.5, and 1 KE/mL) for different time intervals. A549 cell proliferation and apoptosis was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide/Ki67 assay and flow cytometry, respectively. Western blot was used to determine the expressions of proteins involved in proliferation, apoptosis, and phosphoinositide 3-kinase/serine/threonine kinase (PI3K/AKT), Wnt3a/β-catenin signaling pathway. Level of intracellular reactive oxygen species (ROS) was insured by using the ROS kit. Sapylin inhibited A549 cell viability and the expressions of proliferation-related proteins (cyclin E1 and D1) in dose- and time-dependent manners. Sapylin promoted apoptosis in a dose- and time-dependent manners. Sapylin also promoted the expressions of apoptotic proteins (cleaved caspase-3 and 8) in dose- and time-dependent manners. Furthermore, sapylin increased the intracellular concentration of ROS in a dose-dependent manner. Besides, the high expression of ROS level might induce inhibition of cell viability and increase cell apoptosis. The mechanistic study revealed that sapylin inactivated the PI3K/AKT and Wnt3a/β-catenin signaling pathways. Our findings suggest that sapylin inhibits proliferation and promotes apoptosis in lung cancer cells, thus providing a new theoretical basis for the treatment of lung cancer. 相似文献
17.
Xuehai Guan Qiaochu Fu Bingrui Xiong Zhenpeng Song Bin Shu Huilian Bu Bing Xu Anne Manyande Fei Cao Yuke Tian 《Journal of neurochemistry》2015,134(3):590-600
Bone cancer pain (BCP) is one of the most common and severe complications in patients suffering from primary bone cancer or metastatic bone cancer such as breast, prostate, or lung, which profoundly compromises their quality of life. Emerging lines of evidence indicate that central sensitization is required for the development and maintenance of BCP. However, the underlying mechanisms are largely unknown. In this study, we investigated the role of PI3Kγ/Akt in the central sensitization in rats with tumor cell implantation in the tibia, a widely used model of BCP. Our results showed that PI3Kγ and its downstream target pAkt were up‐regulated in a time‐dependent manner and distributed predominately in the superficial layers of the spinal dorsal horn neurons, astrocytes and a minority of microglia, and were colocalized with non‐peptidergic, calcitonin gene‐related peptide‐peptidergic, and A‐type neurons in dorsal root ganglion ipsilateral to tumor cell inoculation in rats. Inhibition of spinal PI3Kγ suppressed BCP‐associated behaviors and the up‐regulation of pAkt in the spinal cord and dorsal root ganglion. This study suggests that PI3Kγ/Akt signal pathway mediates BCP in rats.
18.
Ying Yang Zhifang Yang Ruili Zhang Chunli Jia Rui Mao Shaya Mahati Yuefen Zhang Ge Wu Yan
na Sun Xiao
yan Jia Ainiwaer Aimudula Hua Zhang Yongxing Bao 《Bioscience reports》2021,41(12)
MicroRNAs (miRNAs) play an important role in drug resistance, and it is reported that miR-27a-3p regulated the sensitivity of cisplatin in breast cancer, lung cancer and ovarian cancer. However, the relationship between miR-27a-3p and chemosensitivity of cisplatin in hepatocellular carcinoma (HCC) was unclear, especially the underlying mechanism was unknown. In the present study, we analyzed miR-27a-3p expression levels in 372 tumor tissues and 49 adjacent tissues in HCC samples from TCGA database, and found that the miR-27a-3p was down-regulated in HCC tissues. The level of miR-27a-3p was associated with metastasis, Child–Pugh grade and race. MiR-27a-3p was regarded as a favorable prognosis indicator for HCC patients. Then, miR-27a-3p was overexpressed in HepG2 cell, and was knocked down in PLC cell. Next, we conducted a series of in vitro assays, including MTT, apoptosis and cell cycle assays to observe the biological changes. Further, inhibitor rate and apoptosis rate were detected with pre- and post-cisplatin treatment in HCC. The results showed that overexpression of miR-27a-3p repressed the cell viability, promoted apoptosis and increased the percentage of cells in G0/G1 phase. Importantly, overexpression of miR-27a-3p significantly increased the inhibitor rate and apoptosis rate with cisplatin intervention. Besides, we found that miR-27a-3p added cisplatin sensitivity potentially through regulating PI3K/Akt signaling pathway. Taken together, miR-27a-3p acted as a tumor suppressor gene in HCC cells, and it could be useful for modulating cisplatin sensitivity in chemotherapy. 相似文献
19.
《Saudi Journal of Biological Sciences》2020,27(6):1533-1537
ObjectiveThe objective was to investigate the anti-inflammatory effects of salidroside through the PI3K/Akt signaling pathway and its protective effects on acute hypoxia-induced myocardial injury in rats.MethodsA total of 24 healthy Sprague-Dawley male rats were selected as the experimental subjects. All rats were divided into 4 groups by using the random number table method, with 6 rats in each group. The groups included the normal control group, the salidroside group, the hypobaric hypoxia group, and the hypobaric hypoxia + salidroside group. Rats in the salidroside group were fed in the original animal laboratory and were intragastrically administered with salidroside every morning at a dosage of 35 mg/kg. Rats in the normal control group were intragastrically administered with an equal dosage of saline. Rats in the hypobaric hypoxia + salidroside group were intragastrically administered with salidroside every morning at a dosage of 35 mg/kg, who were fed in the hypoxic experiment module for animals. The altitude was increased to 4000 m, and the rats were kept in the module for 24 h. Rats in the hypobaric hypoxia group were intragastrically administered with an equal dosage of saline in the same environment, and the altitude was increased to 4000 m after administration. Parameters of blood gas analysis, histopathological changes in cardiac tissues, cardiac indexes, and inflammatory factors IL-6 and TNF-α levels of rats in groups were compared.Results1. The cardiac indexes of rats in groups were compared. The differences between the hypobaric hypoxia group and the hypobaric hypoxia + salidroside group were statistically significant (P < 0.05). 2. The results of blood gas analysis of rats in groups were compared. The differences between the hypobaric hypoxia group and the hypobaric hypoxia + salidroside group were significantly different (P < 0.05). 3. In the hypobaric hypoxia group, the myocardial cells of rats were arranged disorderly and shaped differently, with cases such as edema, degeneration, necrosis, nucleus pyknosis, and massive infiltration of inflammatory cells. In the hypobaric hypoxia + salidroside group, the above-mentioned pathological changes in myocardial cells were relieved. 4. Compared with the hypobaric hypoxia group, in the hypobaric hypoxia + salidroside group, the concentrations of IL-6 and TNF-α in rats decreased apparently, and the differences were statistically significant (P < 0.05).ConclusionSalidroside had the repairing and protective effects on the hypobaric hypoxia-induced myocardial injuries in rats. The application of salidroside could reduce the inflammatory responses of rats with hypobaric hypoxia-induced myocardial injuries through PI3K/Akt signaling pathway, thereby protecting the myocardial cells. 相似文献
20.
Jiechun Huang Rongrong Jiang Xianglin Chu Fangrui Wang Xiaotian Sun Yiqing Wang Liewen Pang 《Cell biochemistry and function》2020,38(8):1047-1055
Myocardial infarction (MI) leads to cardiac remodelling and heart failure. Cardiomyocyte apoptosis is considered a critical pathological phenomenon accompanying MI, but the pathogenesis mechanism remains to be explored. MicroRNAs (miRs), with the identity of negative regulator of gene expression, exist as an important contributor to apoptosis. During the experiment of this study, MI mice models were successfully established and sequencing data showed that the expression of miR-23a-5p was significantly enhanced during MI progression. Further steps were taken and it showed that apoptosis of cardiac cells weakened as miR-23a-5p was downregulated and on the contrary that apoptosis strengthened with the overexpression of miR-23a-5p. To explore its working mechanisms, bioinformatics analysis was conducted by referring to multi-databases to predict the targets of miR-23a-5p. Further analysis suggested that those downstream genes enriched in several pathways, especially in the PI3K/Akt singling pathway. Furthermore, it demonstrated that miR-23a-5p was negatively related to the phosphorylation of PI3K/Akt, which plays a critical role in triggering cell apoptosis during MI. Recilisib-activated PI3K/Akt singling pathway could restrain apoptosis from inducing miR-23a-5p overexpression, and Miltefosine-blocked PI3K/Akt singling pathway could restrict apoptosis from inhibiting miR-23a-5p reduction. In conclusion, these findings revealed the pivotal role of miR-23a-5p-PI3K/Akt axis in regulating apoptosis during MI, introducing this novel axis as a potential indicator to detect ischemic heart disease and it could be used for therapeutic intervention. 相似文献