首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 599 毫秒
1.
Crucian carp from populations that lack piscivores are extremely vulnerable to predation. However, in the presence of piscivores these fish develop an inducible morphological defence, a deep body. This switch from a vulnerable, shallow-bodied morph to a morphologically defended morph makes this species very suitable for investigations of anti-predator strategies, and trade-offs between morphological and behavioural defences. To address these questions, we performed eight different experiments. We found that crucian carp exhibited fright responses to chemical cues from unfamiliar predators (northern pike, perch) when these were fed prey that contained alarm substance (for northern pike: crucian carp, roach; for perch: crucian carp). Cues from small pike that were fed prey that lacked alarm substance (swordtails) caused no significant fright response whereas cues from larger pike with the same diet did. Perch on a chironomid diet elicited weaker but significant fright responses. Starved predators caused as strong fright reactions as recently fed ones did, whereas no response was exhibited towards nonpredatory fish (roach, crucian carp). Crucian carp were able to detect the presence of pike after cues had been diluted to an equivalent of 21 000 l, and larger predators elicited stronger fright responses. Prior experience of predators decreased fright responses. In particular, individuals from populations that coexisted with northern pike responded less to chemical cues from northern pike than individuals without prior experience did. Thus, crucian carp may use both alarm-substance related and predator-related cues to identify predators. Further, they were able to discriminate between large and small predators. Finally, individuals from populations that coexist with predators exhibit less pronounced fright responses. These fish have an induced morphological defence, a deep body, which most likely decreases the need for strong antipredator behaviour.  相似文献   

2.
Synopsis Behavior of largemouth bass, Micropterus salmoides, and northern pike, Esox lucius, foraging on fathead minnows, Pimephales promelas, or bluegills, Lepomis macrochirus, was quantified in pools with 50% cover (half the pool had artificial stems at a density of 1000 stems m−2). Both predators spent most of their time in the vegetation. Largemouth bass searched for bluegills and ambushed minnows, whereas the relatively immobile northern pike ambushed all prey. Minnows were closer to predators and were captured more frequently than bluegills. Even when minnows dispersed, they moved continually and eventually wandered within striking distance of a predator. Bluegills dispersed in the cover with predators. Bass captured the few bluegills that strayed into the open and pike captured those that approached too closely in the cover. The ability of predators to capture prey while residing in habitats containing patches of dense cover may explain their residence in areas often considered to be poor ones for foraging. The unit is sponsored jointly by the United States Fish and Wildlife Service, Ohio Department of NaturalResources, The Ohio State University, and the Wildlife Management Institute  相似文献   

3.
Chemical cues from piscivorous fish and prey alarm substances often cause rapid fright responses in prey. However little is known of how piscivore-related chemical cues affect prey behaviour over periods longer than a few hours. Here we have investigated how chemical cues from piscivorous northern pike, Esox lucius, affect habitat choice and diel activity of crucian carp, Carassius carassius, over an extended period 11 days. At the beginning of the experiment control fish were nocturnal while fish in the pike cue treatment were aperiodic. After 11 days, control fish had become more strongly nocturnal and displayed two activity peaks during early and late night whereas fish in the pike cue treatment were still aperiodic with no activity peaks. Habitat choice was aperiodic in both treatments throughout the experiment. In both treatments, more fish were found in the vegetation zone than in the open habitat. This was most pronounced when pike cues were present. These results demonstrate that short-term anti-predator responses to chemical cues from predators can translate into long-term adjustments of diel periodicity. Further, the results did not support the idea that crucian carp should switch to nocturnal activity in response to visually hunting predators. Control fish were nocturnal and chemical cues from pike did not make this pattern more pronounced.  相似文献   

4.
Northern pike (Esox lucius) were introduced to the northern Susitna Basin of south-central Alaska in the 1950’s, and have since spread throughout the upper Cook Inlet Basin. Extirpations of several native fish populations have been documented in this area. It is hypothesized here that invasive pike remodel the ecology of lakes by removing vulnerable prey types and that these changes are reflected in the diet of invasive pike. Trends in pike diet suggest that pike switch to less desirable but more abundant macroinvertebrate prey as preferred fish prey are eliminated. The impacts of pike introduction were studied in detail for one species of resident fish, the threespine stickleback (Gasterosteus aculeatus). Stickleback abundance decreases as pike invasion progresses. Conductivity is a significant environmental predictor of stickleback abundance, with higher conductivity apparently mitigating population reduction. Higher conductivity water may lessen the physiological costs of developing more robust armor, which reduces vulnerability to predation. Maximum lake depth also appears to predict stickleback abundance, though this trend was only marginally significant. Deeper lakes may provide an open-water refuge from pike predation by allowing stickleback to exist outside of the pike inhabited littoral zone. These findings indicate the importance of diverse habitat types and certain chemical and physical characteristics to the outcome of invasion by fish predators.  相似文献   

5.
In predator-prey interactions, the efficiency of the predator is dependent on characteristics of both the predator and the prey, as well as the structure of the environment. In a field enclosure experiment, we tested the effects of a prey refuge on predator search mode, predator efficiency and prey behaviour. Replicated enclosures containing young of the year (0+) and 1-year-old (1+) perch were stocked with 3 differentially sized individuals of either of 2 piscivorous species, perch (Perca fluviatilis), pike (Esox lucius) or no piscivorous predators. Each enclosure contained an open predator area with three small vegetation patches, and a vegetated absolute refuge for the prey. We quantified the behaviour of the predators and the prey simultaneously, and at the end of the experiment the growth of the predators and the mortality and habitat use of the prey were estimated. The activity mode of both predator species was stationary. Perch stayed in pairs in the vegetation patches whereas pike remained solitary and occupied the corners of the enclosure. The largest pike individuals stayed closest to the prey refuge whereas the smallest individuals stayed farthest away from the prey refuge, indicating size-dependent interference among pike. Both size classes of prey showed stronger behavioural responses to pike than to perch with respect to refuge use, distance from refuge and distance to the nearest predator. Prey mortality was higher in the presence of pike than in the presence of perch. Predators decreased in body mass in all treatments, and perch showed a relatively stronger decrease in body mass than pike during the experiment. Growth differences of perch and pike, and mortality differences of prey caused by predation, can be explained by predator morphology, predator attack efficiency and social versus interference behaviour of the predators. These considerations suggest that pike are more efficient piscivores around prey refuges such as the littoral zones of lakes, whereas perch have previously been observed to be more efficient in open areas, such as in the pelagic zones of lakes.  相似文献   

6.
Identification and protection of critical spawning habitat for muskellunge Esox masquinongy and northern pike Esox lucius is important for preserving the reproductive potential of both species. In this study, we implanted miniature radio transmitters through the oviduct into the egg masses of female muskellunge and northern pike just prior to spawning. This non-surgical procedure was a novel approach for identifying spawning sites when transmitters were expelled with the eggs during egg deposition. Preliminary studies in three lakes showed that muskellunge and northern pike deposited many of the transmitters in likely spawning habitat. An inability to find eggs limited our validation of this method, but nevertheless, a relatively high proportion (70%) of northern pike larger than 690 mm (27.2 inches) expelled transmitters in a previously known spawning area in Willow Lake, Minnesota. Shoreline vegetation in that area consisted primarily of sedges Carex spp., and the adjacent water was shallow with substrate consisting of large mats of water bulrush Scirpus subterminalis. A lower proportion (50%) of muskellunge expelled transmitters in Elk Lake, Minnesota. Water depth at likely spawning sites averaged 1.1 m (3.6 feet) and vegetative cover was variable, but Chara spp. was common to most sites. In Moose Lake, Minnesota, containing sympatric populations of muskellunge and northern pike, 60% of muskellunge and 90% of pike expelled transmitters. Chara spp. beds were the predominant substrate where transmitters were expelled in Moose Lake, but the two species deposited transmitters on deepwater bars (3.7–5.2 m) in addition to shallow near-shore habitat. These results suggest more flexibility in depths used for spawning than typically reported for muskellunge and northern pike.  相似文献   

7.
1. Invasions of top predators may have strong cascading effects in ecosystems affecting both prey species abundance and lower trophic levels. A recently discussed factor that may enhance species invasion is climate change and in this context, we studied the effects of an invasion of northern pike into a subarctic lake ecosystem formerly inhabited by the native top predator Arctic char and its prey fish, ninespined stickleback. 2. Our study demonstrated a strong change in fish community composition from a system with Arctic char as top predator and high densities of sticklebacks to a system with northern pike as top predator and very low densities of sticklebacks. A combination of both predation and competition from pike is the likely cause of the extinction of char. 3. The change in top predator species also cascaded down to primary consumers as both zooplankton and predator‐sensitive macroinvertebrates increased in abundance. 4. Although the pike invasion coincided with increasing summer temperatures in the study area we have no conclusive evidence that the temperature increase is the causal mechanism behind the pike invasion. But still, our study provides possible effects of future pike invasions in mountain lakes related to climate change. We suggest that future pike invasions will have strong effects in lake ecosystems, both by replacing native top consumers and through cascading effects on lower trophic levels.  相似文献   

8.
Versatility in habitat use by a top aquatic predator, Esox lucius L.   总被引:1,自引:0,他引:1  
The habitat selected by northern pike, Esox lucius , a solitary top aquatic predator, was evaluated using radio location and ultrasonic telemetry. These predators moved extensively throughout the lake and exhibited a distinct preference for shallow vegetated areas close to shore. Selection of habitat was significantly influenced by meteorological factors. On windy days pike chose habitats which were further from shore, but not necessarily deeper, than those chosen on calm days. On sunny days pike moved into habitats that were close to shore and relatively shallow. Habitat selection of pike was not significantly influenced by rain. Northern pike exhibited a much greater versatility in the range of habitats they utilized than was previously believed. We propose that such versatility is an important feature of the behaviour of top predators.  相似文献   

9.
This study examined mercury levels in northern pike (Esox lucius) from the Twin Valley Reservoir in southern Alberta, 2 years after construction in 2003. The hypothesis was tested that mercury concentrations in pike from the reservoir are significantly higher than in pike from the nearby Oldman River. Mercury concentrations in muscle tissue (0.37–1.54 ppm) generally exceeded the consumption guideline of 0.5 ppm total mercury (THg), and were significantly higher (3.5-fold) than northern pike mercury concentrations in the Oldman River. In addition, these levels exceeded (up to 2-fold) previously published data from other reservoirs of the northern hemisphere. Gill-netting followed by stomach contents and stable isotope analysis revealed a very simple food web. No zooplanktivorous fish species were present, and the benthic fish community contained only few white sucker (Catostomus commersoni). Thus, the reservoir almost completely lacked forage fish, and the pike fed primarily on amphipods (Gammarus lacustris and Hyalella azteca), whose average mercury concentrations were 0.21 ppm. An observed low growth trajectory of northern pike in this reservoir may reflect low growth efficiency as a result of their invertebrate diet.  相似文献   

10.
1. Environmental changes such as eutrophication and increasing inputs of humic matter (brownification) may have strong effects on predator–prey interactions in lakes through a reduction in the visual conditions affecting foraging behaviour of visually oriented predators. 2. In this experiment, we studied the effects of visual range (25–200 cm) in combination with optically deteriorating treatments (algae, clay or brown humic water) on predator–prey interactions between pike (Esox lucius) and roach (Rutilus rutilus). We measured effects on reaction distance and strike distance for pike and escape distance for roach, when pike individuals were exposed to free‐swimming roach as well as to roach held in a glass cylinder. 3. We found that reaction distance decreased with decreasing visual range caused by increasing levels of algae, clay or humic matter. The effect of reaction distance was stronger in turbid water (clay, algae) than in the brown water treatment. 4. Strike distance was neither affected by visual range nor by optical treatment, but we found shorter strike distances when pike attacked roach using visual cues only (roach held in a cylinder) compared to when pike could use multiple senses (free‐swimming roach). Escape distance for roach was longer in turbid than in brown water treatments. 5. Changes in environmental drivers, such as eutrophication and brownification, affecting the optical climate should thus have consequences for the strength of predator–prey interactions through changes in piscivore foraging efficiency and prey escape behaviour. This in turn may affect lake ecosystems through higher‐order interactions.  相似文献   

11.
Aquatic organisms, especially fishes, exhibit exceptional diversity in mouth morphology and this variation has been shown to influence foraging patterns. We compared mouth morphology among muskellunge Esox masquinongy, northern pike Esox lucius and their hybrid, tiger muskellunge E. masquinongy x E. lucius. Head and mouth size among the three taxa were similar for juveniles (<400 mm total length), but diverged with increasing length, being greater for northern pike than muskellunge. Tiger muskellunge had a head and mouth size intermediate to the two, but more similar to northern pike than muskellunge. Morphological differences among taxa were related to data examining prey size selection in laboratory and field experiments. In the laboratory, northern pike selected prey that were smaller than their maximum mouth width (widest point between outside corners of mouth), tiger muskellunge selected larger prey, and muskellunge size-selection was intermediate between the other two taxa. Among the three esocids, muskellunge had the smallest increase in handling time with increasing prey body depth relative to predator mouth width. In a common garden field experiment in three lakes containing mainly deep-bodied prey, results generally followed morphological patterns, with northern pike selecting larger prey compared to muskellunge. Although morphology predicted most of the variation in greatest body depth of prey consumed, the best predictor of prey size was a model that included predator mouth width, taxon, and interaction. Information comparing prey size selection among esocid taxa is useful for understanding how to manage esocid populations based on system-specific prey characteristics and also for understanding how variations in morphological characteristics of apex predators can influence prey vulnerability and ecosystem structure.  相似文献   

12.
Results are presented from a survey of walleye and northern pike in Ethel, Marie and Wolf Lakes, Alberta conducted May-September, 1983. Three types of experimental gill net were fished, mainly inshore. Northern pike were abundant in all three lakes but white sucker and yellow perch also were common. Walleye were caught in largest numbers in Wolf Lake. Age and growth of both walleye and northern pike were determined from examination of the opercular bones. The walleye in the three lakes were represented by a few strong year classes but there was no synchronism between the lakes. The strong 1975 year class in Ethel and Wolf Lakes may have been correlated with high spring precipitation and heavy run-off. Although there were dominant year classes in the northern pike populations (especially the 1979 year class) the variability was not so marked as in the walleye. There were no significant differences between length-at-age for year classes of walleye in Ethel and Marie or northern pike in all three lakes. In Wolf Lake the 1978 and 1979 year classes grew faster than in previous years. Walleye and northern pike growth was well described by the von Bertalanffy growth model. Females of both species grew to a greater ultimate length and had a longer lifespan than the males. Fecundity data are presented for walleye from Wolf Lake (log10 absolute fecundity = 0.856 + 2.441 log10 length) and northern pike from Marie Lake (log10 absolute fecundity =?2.671+4.052 log10 length). The stomach contents of both species were examined during May and June. The majority of walleye had empty stomachs. Walleye and northern pike in Ethel and Wolf Lakes fed on a variety of fish and invertebrate species but both fed mainly on fish (in particular whitefish) in Marie Lake. The similarity of diet suggests competition for prey species. A walleye yield to commercial fishermen of c. 0.69 kg ha?1 year?1 in Wolf Lake has made up 8% of the total catch. Since 1970/71 when mesh size of nets was increased, the yield has been reduced to c. 0.30 kg ha?1 year?1. Anglers remove an additional c. 0.48 kg ha?1 year?1 walleye from Wolf Lake. Northern pike yields to commercial fishermen have been c. 2.00 kg ha?1 year?1 in Wolf Lake. Ethel and Marie Lakes have yielded only poor catches of walleye and northern pike. A yield model was used to illustrate that faster-growing northern pike have higher potential yields than walleye. Walleye produce higher yields in Wolf Lake than in Marie Lake, the reverse being true for northern pike. It is suggested that northern pike could be cropped at a higher rate in Marie and Wolf Lakes with a possible improvement in walleye stocks.  相似文献   

13.
Northern pike (Esox lucius) are often considered to be specialist piscivores, but under some circumstances will continue to eat invertebrates as adults. To examine effects of fish assemblage composition on the trophic ecology of pike, we combined stable isotope analysis (SIA) of carbon and nitrogen and stomach content analysis (SCA) on pike from five lakes in northern Alberta, three of which contain only pike (“pike-only”) and two that also contain yellow perch (Perca flavescens) or white sucker (Catostomus commersoni) (“pike-other”). Fish were more important as prey and empty stomachs, which often characterize piscivores, were significantly more frequent in pike-other than in pike-only lakes. However, even though invertebrates were more important for pike in pike-only lakes, SIA and SCA indicated that invertebrates were also an important component of pike diets in pike-other lakes. SIA and SCA also revealed considerable intrapopulation variation in trophic ecology, with individuals in some populations differing by as much as two trophic levels. Comparisons of stomach contents and isotope signatures of the same fish suggested that within these variable populations, specialization on invertebrates or fish was a long-term trait of some individuals. SIA indicated that trophic position increased and diets shifted to a greater importance of littoral prey as pike grew in pike-only lakes, but not in lakes with other fish present. Trophic adaptability in northern pike is expressed at both the population level, where the trophic ecology is sensitive to differences in prey regimes, and at the organismal level, in the form of intrapopulation variation and individual specialization. Received: 1 July 1998 / Accepted: 3 February 1999  相似文献   

14.
The feeding ecology of three piscivorous fish species (perch (Perca fluviatilis), pike (Esox lucius) and burbot (Lota lota)), was studied in the subarctic Pasvik watercourse (69 °N), northern Norway and Russia. All three species primarily occupied the benthic habitats in the watercourse. Perch and burbot exhibited distinct ontogenetic niche shifts in food resource use, perch changing from a dominance of zooplankton to zoobenthos to fish, and burbot from zoobenthos to fish. Fish prey dominated the diet of all the investigated size-classes of pike, but small-sized pike (<20 cm) were not represented in the sample. Fish prey size was positively related to predator size in all three species. Whitefish (Coregonus lavaretus) was the dominant prey of pike and large-sized burbot and perch. Nine-spined sticklebacks (Pungitius pungitius) was also an important prey and appeared to be a dietary stepping-stone enhancing the transition from invertebrate feeding to consumption of large-sized whitefish prey for all three predators. A cluster analysis separated the different size groups of the three predator species into five functional feeding groups, most of them containing two or all three species. Within these feeding groups, and especially among the piscivorous size-classes, there was a strong and significant interspecific overlap in prey selection, and the dietary similarities between the species were in general much larger than the intraspecific similarities between ontogenetic stages. All three piscivorous species are important top predators in the aquatic food web of the watercourse, and their ontogenetic diet shifts and resource partitioning patterns generate a substantial food web complexity in this subarctic ecosystem.  相似文献   

15.
Fathead minnows (Cyprinidae: Pimephales promelas) from a population that is sympatric with predatory northern pike (Esocidae: Esox lucius) exhibited a fright reaction to the visual stimulus of a live northern pike significantly more often than minnows from a population that is allopatric with pike. The fright response included increased use of shelter, dashing and freezing. Minnows from the pike-sympatric population also exhibited a significantly greater fright response, measured as a reduction in activity, following exposure to chemical stimuli from pike (i.e. water from a tank that had contained a pike) than did minnows from the pike-allopatric population. There was no significant change in activity by minnows from either population following exposure to chemical stimuli from nonpiscivorous peacock gudgeons (Eleotridae: Tateurndina ocellicauda), suggesting that the difference between the two populations is specific to stimuli from pike rather than a general difference in response to chemical stimuli from heterospecific fishes. Fathead minnows apparently utilize at least a two-tiered predator recognition system that incorporates both visual and chemical cues.  相似文献   

16.
M. P. Grimm 《Aquatic Ecology》1982,16(2-3):285-286
Summary In order to evaluate the stocking of artificially propagated northern pike (Esox lucius L.) fingerlings (4–6 cm), of which 1–1,5 million/year are produced by the Organization for the Improvement of Inland Fisheries (O.V.B.), the composition and abundance of northern pike populations in four shallow waters were monitored during a 5–8 year period. The specimens stocked were marked by amputation of a ventral fin. At the end of their first growing season the numbers of these and of those that were naturally reproduced (O+ pike) as well as the abundance of larger specimens were estimated using mark-recapture methods. Sampling was executed by electrofishing, seining and (incidentally) trawling. The O+ pike was caught quantitively by electrofishing.Based on the distribution pattern observed during the sampling period, four age/length classes were distinguished. (1) O+ pike, caught almost without exeption within emerged or submerged vegetation; (2) O+<pike<41 cm (forklength) found within submerged, floating and ingrowing vegetation; (3) 41 cm<pike<54 cm caught within or in the vicinity of vegetated areas; (4) pike>54 cm, the majority of which — in two experimental waters — were found outside the vegetation. Within the length range of 0–54 cm, the biomass of O+ pike and of 0–41 cm pike appeared to be negatively correlated with those of larger pike. The standing stock<54 cm pike was found to be determined by the amount of aquatic vegetation. This phenomenon was still more pronounced when the different habitat preferences of the various length classes were taken into account (GRIMM, 1981).Based on the negative correlations it is concluded that the biomass of 0–41 cm pike/ha preferred habitat is determined by the biomass of larger northern pike and that the stocking of fingerlings does not influence this relationship.In one of the experimental waters a high mortality occurred due to the severe winter of 1978/–1979, causing a decline of at least 50% of the abundance of legal-sized (48 cm) northern pike. In the following year (1979) the numbers and biomass of the O+ class amounted to 10 and 5 times the previously recorded highest values, respectively. In 1980 the O+ class was virtually absent. As a result of these extreme values the negative correlation was found to be exponential, indicating a density-dependent relationship between smaller (0–41 cm) and larger (41–54 cm) pike. It was shown that, in the 3 years fingerlings were stocked, the abundance of 0–41 cm pike (kg/ha preferred habitat) relative to the abundance of larger pike, did not differ from that in the 4 years in which fingerlings were not introduced.In the two years that pike-fingerlings were introduced in the beginning of May in this water, the frequency of occurrence of O+ pike, originally stocked as fingerlings, amounted to ca. 80%. In the year stocking took place at the end of May, introduced pike constituted only ca. 6% of the O+ population. These high and low frequencies are explained by the fact that the first and last introduced specimens are either ahead of or behind the ecological time table: they are on the average larger or smaller then the naturally reproduced specimens.Intraspecific predation within the O-class can be a factor of importance (GRIMM, 1981). Therefore, it is supposed that the frequency of occurrence reflects the number of naturally reproduced pike that were replaced by the stocked ones.  相似文献   

17.
The frequency of individuals with empty stomachs (FES) can vary greatly among northern pike populations. However, the FES has only seldom been analyzed in this species and its meaning is still not fully understood. It has been suggested that a high FES may reflect a strongly piscivorous behaviour while low FES could reflect a higher utilization of invertebrates. We compared the stomach contents and the trophic position of northern pike in 16 populations of individuals feeding mainly on fish or benthic invertebrates. We tested the hypothesis that northern pike with empty stomachs or with fish in their stomachs have a higher trophic position than individuals feeding on invertebrates. Carbon (δ13C) and nitrogen (δ15N) stable isotope signatures were used to estimate the trophic position of individuals. We found no significant difference in the trophic position among piscivores, invertebrate feeders, and northern pike with empty stomachs. The average trophic position of northern pike was high (mean ± SD = 4.3 ± 0.4, n = 66) and was correlated with total length. These results indicate that, although invertebrates could be an important part of the diet of northern pike in Canadian Shield lakes, fish are still the dominant prey. Hence, feeding on invertebrates in our study lakes would reflect an opportunistic rather than a specialized feeding strategy.  相似文献   

18.
The northern pike (Esox lucius) is an important and selective piscivorethat chooses smaller prey than predicted from energy / timebudgets. In a laboratory experiment, we investigated pike predatorybehavior to explain this selectivity. Northern pike feedingon different prey sizes in aquaria were observed when foragingalone, when in the presence of chemical cues from similar-sizedor larger conspecifics, and when in the presence of conspecifics thatwere allowed to interact with the focal pike. The results showthat prey handling time increases with prey size and that theduration of manipulating and handling prey inflicts a risk ofexposure to cannibals and kleptoparasites on the pike. Therefore,the risk of falling victim to cannibals or kleptoparasites increaseswith prey size. Attracting and experiencing intraspecific interactorscan be regarded as major fitness costs. Chemical cues from foragingconspecifics have only minor effects on pike foraging behavior.Furthermore, the ability to strike and swallow prey head first improvespike predatory performance because failing to do so increases handlingtime. Our findings emphasize the increasing potential costswith large prey and explain previous contradictory suggestionson the underlying mechanisms of behavior, selectivity, and trophiceffects of northern pike predation.  相似文献   

19.
We assessed the long-term (16 years) effects of introducing piscivores (northern pike) into a small, boreal lake (Lake 221, Experimental Lakes Area) containing abundant populations of two planktivorous fish species. After the introduction, pearl dace were extirpated and yellow perch abundance was greatly reduced. Daphnia species shifted from D. galeata mendota to larger bodied Daphnia catawba, but the total zooplankton biomass did not increase, nor did the biomass of large grazers such as Daphnia. Phytoplankton biomass decreased after the northern pike introduction, but increased when northern pike were partially removed from the lake. Phosphorus (P) excretion by fish was ∼0.18 mg P m−2 d−1 before pike addition, declined rapidly to approximately 0.03–0.10 as planktivorous perch and dace populations were reduced by pike, and increased back to premanipulation levels after the pike were partially removed and the perch population recovered. When perch were abundant, P excretion by fish supported about 30% of the P demand by primary producers, decreasing to 6–14% when pike were abundant. Changes in phytoplankton abundance in Lake 221 appear to be driven by changes in P cycling by yellow perch, whose abundance was controlled by the addition and removal of pike. These results confirm the role of nutrient cycling in mediating trophic cascades and are consistent with previous enclosure experiments conducted in the same lake.  相似文献   

20.
Many laboratory studies have documented that mercury can be toxic to fish, but it is largely unknown if mercury is toxic to fish in their natural environments. The objective of our study was to investigate the toxic effects of mercury on northern pike (Esox lucius) at Isle Royale, Michigan. In 124 northern pike from eight inland lakes, concentrations of total mercury in skin-on fillets ranged from 0.069 to 0.622 microg/g wet mass (wet wt). Concentrations of total mercury in livers increased exponentially compared with concentrations in fillets, to a maximum of 3.1 microg/g wet wt. Methylmercury constituted a majority of the mercury in livers with total mercury concentrations <0.5 microg/g wet wt, but declined to 28-51% of the mercury in livers with total mercury concentrations >0.5 microg/g wet wt. Liver color (absorbance at 400 nm) varied among northern pike and was positively related to liver total mercury concentration. The pigment causing variation in liver color was identified as lipofuscin, which results from lipid peroxidation of membranous organelles. An analysis of covariance revealed lipofuscin accumulation was primarily associated with mercury exposure, and this association obscured any normal accumulation from aging. We also documented decreased lipid reserves in livers and poor condition factors of northern pike with high liver total mercury concentrations. Our results suggest (i) northern pike at Isle Royale are experiencing toxicity at concentrations of total mercury common for northern pike and other piscivorous fish elsewhere in North America and (ii) liver color may be useful for indicating mercury exposure and effects in northern pike at Isle Royale and possibly other aquatic ecosystems and other fish species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号